Hooked on benzodiazepines: GABAA receptor subtypes and addiction

Benzodiazepines are widely used clinically to treat anxiety and insomnia. They also induce muscle relaxation, control epileptic seizures, and can produce amnesia. Moreover, benzodiazepines are often abused after chronic clinical treatment and also for recreational purposes. Within weeks, tolerance to the pharmacological effects can develop as a sign of dependence. In vulnerable individuals with compulsive drug use, addiction will be diagnosed. Here we review recent observations from animal models regarding the cellular and molecular basis that might underlie the addictive properties of benzodiazepines. These data reveal how benzodiazepines, acting through specific GABA(A) receptor subtypes, activate midbrain dopamine neurons, and how this could hijack the mesolimbic reward system. Such findings have important implications for the future design of benzodiazepines with reduced or even absent addiction liability.

[1]  Hannah Monyer,et al.  Cerebellar GABAA receptor selective for a behavioural alcohol antagonist , 1990, Nature.

[2]  J. Kauer,et al.  LTP of GABAergic synapses in the ventral tegmental area and beyond , 2008, The Journal of physiology.

[3]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[4]  G. Dawson,et al.  Evidence for a Significant Role of α3-Containing GABAA Receptors in Mediating the Anxiolytic Effects of Benzodiazepines , 2005, The Journal of Neuroscience.

[5]  H. Pétursson The benzodiazepine withdrawal syndrome. , 1994, Addiction.

[6]  M. Brodie,et al.  Ethanol directly excites dopaminergic ventral tegmental area reward neurons. , 1999, Alcoholism, clinical and experimental research.

[7]  S. Henriksen,et al.  Adaptive responses of gamma-aminobutyric acid neurons in the ventral tegmental area to chronic ethanol. , 1999, The Journal of pharmacology and experimental therapeutics.

[8]  C. Lüscher,et al.  Cocaine-evoked synaptic plasticity: a key to addiction? , 2008, Nature Neuroscience.

[9]  J. Cryan,et al.  Specific γ‐hydroxybutyrate‐binding sites but loss of pharmacological effects of γ‐hydroxybutyrate in GABAB(1)‐deficient mice , 2003 .

[10]  F. Kuenzi,et al.  Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the α5 Subunit of the GABAAReceptor , 2002, The Journal of Neuroscience.

[11]  C. Czajkowski,et al.  Structural requirements for imidazobenzodiazepine binding to GABA(A) receptors. , 2003, Molecular pharmacology.

[12]  G. Dawson,et al.  TPA023 [7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an Agonist Selective for α2- and α3-Containing GABAA Receptors, Is a Nonsedating Anxiolytic in Rodents and Primates , 2006, Journal of Pharmacology and Experimental Therapeutics.

[13]  Erwin Sigel,et al.  Mapping of the benzodiazepine recognition site on GABA(A) receptors. , 2002, Current topics in medicinal chemistry.

[14]  D. S. Weiss,et al.  Mechanism of action of benzodiazepines on GABAA receptors , 2006, British journal of pharmacology.

[15]  C. Lüscher,et al.  Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system , 2004, Nature Neuroscience.

[16]  K. Vogt,et al.  Trace fear conditioning involves hippocampal α5 GABAA receptors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Aragona,et al.  Abuse, dependence, and epileptic seizures after zolpidem withdrawal: review and case report. , 2000, Clinical neuropharmacology.

[18]  R. Macdonald,et al.  Barbiturates Require the N Terminus and First Transmembrane Domain of the δ Subunit for Enhancement of α1β3δ GABAA Receptor Currents* , 2010, The Journal of Biological Chemistry.

[19]  M. Wolf The Bermuda Triangle of cocaine-induced neuroadaptations , 2010, Trends in Neurosciences.

[20]  A. Guidotti,et al.  Imidazenil, a new anxiolytic and anticonvulsant drug, attenuates a benzodiazepine-induced cognition deficit in monkeys. , 1995, The Journal of pharmacology and experimental therapeutics.

[21]  L. Sternbach The benzodiazepine story. , 1983, Journal of psychoactive drugs.

[22]  L. Boulanger-Rostowsky,et al.  Dépendance au zolpidem : à propos de deux cas , 2004 .

[23]  岡本 隆史 Hyperpolarization-activated cation current (I[h]) is an ethanol target in midbrain dopamine neurons of mice , 2008 .

[24]  G. Dawson,et al.  Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Malenka,et al.  Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons , 2003, Neuron.

[26]  J. Fritschy,et al.  Neuron-specific expression of GABAA-receptor subtypes: differential association of the alpha 1- and alpha 3-subunits with serotonergic and GABAergic neurons. , 1993, Neuroscience.

[27]  N. Lan,et al.  Cloning and characterization of the human GABAA receptor alpha 4 subunit: identification of a unique diazepam-insensitive binding site. , 1995, European Journal of Pharmacology.

[28]  C. Lüscher,et al.  Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc , 2009, Nature Neuroscience.

[29]  J. Benson,et al.  Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. , 1999, Nature.

[30]  M. Fillenz,et al.  Both systemic and local administration of benzodiazepine agonists inhibit the in vivo release of 5-HT from ventral hippocampus , 1989, Neuropharmacology.

[31]  A. Guidotti,et al.  Imidazenil: A low efficacy agonist at α1- but high efficacy at α5-GABAA receptors fail to show anticonvulsant cross tolerance to diazepam or zolpidem , 2008, Neuropharmacology.

[32]  U. Rudolph,et al.  GABA-based therapeutic approaches: GABAA receptor subtype functions. , 2006, Current opinion in pharmacology.

[33]  P. Ciofi,et al.  cDNA cloning and expression of a γ‐aminobutyric acidA receptor ε‐subunit in rat brain , 2000 .

[34]  P. Ciofi,et al.  cDNA cloning and expression of a gamma-aminobutyric acid A receptor epsilon-subunit in rat brain. , 2000, The European journal of neuroscience.

[35]  P. Worboys,et al.  Rodent pharmacokinetics and receptor occupancy of the GABAA receptor subtype selective benzodiazepine site ligand L‐838417 , 2005, Biopharmaceutics & drug disposition.

[36]  Erwin Sigel,et al.  Forced subunit assembly in α1β2γ2 GABAA receptors: insight into the absolute arrangement , 2002 .

[37]  Loren J. Martin,et al.  α5GABAA Receptors Mediate the Amnestic But Not Sedative-Hypnotic Effects of the General Anesthetic Etomidate , 2006, The Journal of Neuroscience.

[38]  A. Koht,et al.  Does midazolam cause retrograde amnesia, and can flumazenil reverse that amnesia? , 1997, Anesthesia and analgesia.

[39]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[40]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[41]  M. Diana,et al.  Acetaldehyde Increases Dopaminergic Neuronal Activity in the VTA , 2004, Neuropsychopharmacology.

[42]  R. Mckernan,et al.  Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype , 2000, Nature Neuroscience.

[43]  A. Grace,et al.  Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. , 1979, European journal of pharmacology.

[44]  K. Deisseroth,et al.  Drug-Driven AMPA Receptor Redistribution Mimicked by Selective Dopamine Neuron Stimulation , 2010, PloS one.

[45]  J. Benson,et al.  Pharmacology of recombinant gamma-aminobutyric acidA receptors rendered diazepam-insensitive by point-mutated alpha-subunits. , 1998, FEBS letters.

[46]  M. Chebib GABAC RECEPTOR ION CHANNELS , 2004, Clinical and experimental pharmacology & physiology.

[47]  J. Fritschy,et al.  Selective Allocation of GABAA Receptors Containing the α1 Subunit to Neurochemically Distinct Subpopulations of Rat Hippocampal Interneurons , 1994, The European journal of neuroscience.

[48]  P. Kalivas,et al.  Drug Addiction as a Pathology of Staged Neuroplasticity , 2008, Neuropsychopharmacology.

[49]  Elyssa B. Margolis,et al.  Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons , 2010, The Journal of Neuroscience.

[50]  E. Stein,et al.  Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors—an in vivo electrochemical study , 1998, Brain Research.

[51]  J. Woods,et al.  Benzodiazepines: use, abuse, and consequences. , 1992, Pharmacological reviews.

[52]  C. Lüscher,et al.  Rapid Synthesis and Synaptic Insertion of GluR2 for mGluR-LTD in the Ventral Tegmental Area , 2007, Science.

[53]  T. Dunwiddie,et al.  Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro , 1990, Brain Research.

[54]  Kelly R. Tan,et al.  Neural bases for addictive properties of benzodiazepines , 2010, Nature.

[55]  J. Rowlett,et al.  Comparison of zolpidem and midazolam self-administration under progressive-ratio schedules: consumer demand and labor supply analyses. , 2007, Experimental and clinical psychopharmacology.

[56]  R. Silbergleit,et al.  Midazolam versus diazepam for the treatment of status epilepticus in children and young adults: a meta-analysis. , 2010, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[57]  R. Malenka,et al.  Synaptic plasticity and addiction , 2007, Nature Reviews Neuroscience.

[58]  N. Koshikawa,et al.  Opposite effects of midazolam and beta-carboline-3-carboxylate ethyl ester on the release of dopamine from rat nucleus accumbens measured by in vivo microdialysis. , 1994, European journal of pharmacology.

[59]  D. S. Weiss,et al.  Stoichiometry of a Recombinant GABAA Receptor , 1996, The Journal of Neuroscience.

[60]  G. Dawson,et al.  Reducing Abuse Liability of GABAA/Benzodiazepine Ligands via Selective Partial Agonist Efficacy at α1 and α2/3 Subtypes , 2010, Journal of Pharmacology and Experimental Therapeutics.

[61]  Mark T. Harnett,et al.  Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. , 2006, Journal of neurophysiology.

[62]  Trevor W. Robbins,et al.  High Impulsivity Predicts the Switch to Compulsive Cocaine-Taking , 2008, Science.

[63]  L. Greenfield,et al.  Benzodiazepine Withdrawal-Induced Glutamatergic Plasticity Involves Up-Regulation of GluR1-Containing α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptors in Hippocampal CA1 Neurons , 2007, Journal of Pharmacology and Experimental Therapeutics.

[64]  T. Rülicke,et al.  Molecular and neuronal substrate for the selective attenuation of anxiety. , 2000, Science.

[65]  H. Fibiger,et al.  Benzodiazepine-induced decreases in extracellular concentrations of dopamine in the nucleus accumbens after acute and repeated administration , 2007, Psychopharmacology.

[66]  E. Sigel,et al.  A point mutation in the gamma2 subunit of gamma-aminobutyric acid type A receptors results in altered benzodiazepine binding site specificity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Seeburg,et al.  A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. , 1992, The Journal of biological chemistry.

[68]  K. Vogt,et al.  Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  C. Lüscher,et al.  Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression , 2006, Nature Neuroscience.

[70]  R. North,et al.  Opioids excite dopamine neurons by hyperpolarization of local interneurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  Masahiko Watanabe,et al.  RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area , 2007, Nature Neuroscience.

[72]  B. Bettler,et al.  GABAB receptors: physiological functions and mechanisms of diversity. , 2010, Advances in pharmacology.

[73]  D. Aunis,et al.  Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator γ‐hydroxybutyrate , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[74]  J. Mellor,et al.  Frequency‐Dependent Actions of Benzodiazepines on GABAA Receptors in Cultured Murine Cerebellar Granule Cells , 1997, The Journal of physiology.

[75]  Bryan Kolb,et al.  Structural plasticity associated with exposure to drugs of abuse , 2004, Neuropharmacology.

[76]  S. Petrou,et al.  An Epilepsy-Related Region in the GABAA Receptor Mediates Long-Distance Effects on GABA and Benzodiazepine Binding Sites , 2010, Molecular Pharmacology.

[77]  H. Mohler,et al.  Benzodiazepine receptor: demonstration in the central nervous system , 1977, Science.

[78]  Peter Somogyi,et al.  Segregation of Different GABAA Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[79]  M. Kreek,et al.  Effect of chronic “binge cocaine” on basal levels and cocaine‐induced increases of dopamine in the caudate putamen and nucleus accumbens of C57BL/6J and 129/J mice , 2003, Synapse.

[80]  B. Birnir,et al.  Hippocampal GABAAchannel conductance increased by diazepam , 1997, Nature.

[81]  M. Mandelli,et al.  Molecular targets for the myorelaxant action of diazepam. , 2001, Molecular pharmacology.

[82]  W. Sieghart,et al.  Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. , 1995, Pharmacological reviews.

[83]  J. Kauer,et al.  Opioids block long-term potentiation of inhibitory synapses , 2007, Nature.

[84]  R. Shader,et al.  Clinical Uses of Benzodiazepines , 1993, Journal of clinical psychopharmacology.

[85]  C. Salzman Addiction to Benzodiazepines , 2004, Psychiatric Quarterly.

[86]  J. Kornhuber,et al.  Extensive craving in high dose zolpidem dependency , 2008, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[87]  Werner Sieghart,et al.  International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update , 2008, Pharmacological Reviews.

[88]  E. Korpi,et al.  Long-lasting Modulation of Glutamatergic Transmission in VTA Dopamine Neurons after a Single Dose of Benzodiazepine Agonists , 2009, Neuropsychopharmacology.

[89]  A. Guidotti,et al.  Imidazenil: a new partial positive allosteric modulator of gamma-aminobutyric acid (GABA) action at GABAA receptors. , 1993, The Journal of pharmacology and experimental therapeutics.

[90]  D. Lovinger,et al.  Tonic for what ails us? high-affinity GABAA receptors and alcohol. , 2007, Alcohol.

[91]  Mark A. Ungless,et al.  Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons , 2001, Nature.

[92]  D. P. O'Brien,et al.  Inhibition of non-dopamine cells in the ventral tegmental area by benzodiazepines: relationship to A10 dopamine cell activity. , 1987, European journal of pharmacology.

[93]  E. Sigel,et al.  A point mutation in the γ2 subunit of γ-aminobutyric acid type A receptors results in altered benzodiazepine binding site specificity , 1997 .

[94]  M. Poo,et al.  Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons , 2005, Nature.

[95]  C. A. Doupnik,et al.  Measuring the modulatory effects of RGS proteins on GIRK channels. , 2004, Methods in enzymology.

[96]  M. Morales,et al.  Glutamatergic neurons are present in the rat ventral tegmental area , 2007, The European journal of neuroscience.

[97]  K. Anderson,et al.  Drug treatment of REM sleep behavior disorder: the use of drug therapies other than clonazepam. , 2009, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[98]  Kazuto Kobayashi,et al.  Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons , 2004, Journal of Neurochemistry.

[99]  C. Lüscher,et al.  mGluRs induce a long‐term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors , 2005, The European journal of neuroscience.

[100]  H. Isbell,et al.  Addiction to analgesics and barbiturates. , 1950, The Journal of pharmacology and experimental therapeutics.

[101]  P. Kalivas,et al.  Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. , 1990, The Journal of pharmacology and experimental therapeutics.

[102]  R. Olsen,et al.  Ethanol enhances α4β3δ and α6β3δ γ-aminobutyric acid type A receptors at low concentrations known to affect humans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  R. Twyman,et al.  Benzodiazepine and beta‐carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. , 1994, The Journal of physiology.

[104]  Mark J. Thomas,et al.  Neuroplasticity in the mesolimbic dopamine system and cocaine addiction , 2008, British journal of pharmacology.

[105]  R. Malenka,et al.  Acute and Chronic Cocaine-Induced Potentiation of Synaptic Strength in the Ventral Tegmental Area: Electrophysiological and Behavioral Correlates in Individual Rats , 2004, The Journal of Neuroscience.

[106]  G. Sperk,et al.  Subunit composition, distribution and function of GABA(A) receptor subtypes. , 2002, Current topics in medicinal chemistry.

[107]  J. Benson,et al.  Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes , 1999, Nature.

[108]  A. Guidotti,et al.  Anticonvulsant, anxiolytic, and non-sedating actions of imidazenil and other imidazo-benzodiazepine carboxamide derivatives , 2010, Pharmacology Biochemistry and Behavior.

[109]  P. Seeburg,et al.  Natural mutation of GABAA receptor alpha 6 subunit alters benzodiazepine affinity but not allosteric GABA effects. , 1993, European journal of pharmacology.

[110]  W. Schultz,et al.  Dopamine signals for reward value and risk: basic and recent data , 2010, Behavioral and Brain Functions.

[111]  R. C. Pierce,et al.  The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? , 2006, Neuroscience & Biobehavioral Reviews.

[112]  E. Nestler Is there a common molecular pathway for addiction? , 2005, Nature Neuroscience.

[113]  C. Lüscher,et al.  Addictive drugs modulate GIRK-channel signaling by regulating RGS proteins. , 2008, Trends in pharmacological sciences.

[114]  P. Kalivas,et al.  Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  E A Barnard,et al.  International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. , 1998, Pharmacological reviews.

[116]  J. Cryan,et al.  Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)-deficient mice. , 2003, The European journal of neuroscience.

[117]  E. Sigel,et al.  The benzodiazepine binding site of GABAA receptors. , 1997, Trends in pharmacological sciences.

[118]  J. Fritschy,et al.  Neuron-specific expression of GABAA-receptor subtypes: Differential association of theα1- andα3-subunits with serotonergic and gabaergic neurons , 1993, Neuroscience.

[119]  D. Kullmann,et al.  Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? , 2005, Progress in biophysics and molecular biology.

[120]  J. Benson,et al.  Pharmacology of recombinant γ‐aminobutyric acidA receptors rendered diazepam‐insensitive by point‐mutated α‐subunits , 1998 .

[121]  P. Das,et al.  Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal , 2008, The Journal of comparative neurology.