Synthesis and magnetic interaction on concentrated Fe3O4 nanoparticles obtained by the co-precipitation and hydrothermal chemical methods

[1]  Guanglu Ge,et al.  The Role of the OH Group in Citric Acid in the Coordination with Fe3O4 Nanoparticles. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[2]  A. Ramazani,et al.  Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe3O4) nanoparticles at different reaction temperatures , 2019, Materials Chemistry and Physics.

[3]  P. Tiberto,et al.  Verwey transition temperature distribution in magnetic nanocomposites containing polydisperse magnetite nanoparticles , 2019, Journal of Materials Science.

[4]  A. Ghule,et al.  Gram bean extract-mediated synthesis of FeO nanoparticles for tuning the magneto-structural properties that influence the hyperthermia performance , 2019, Journal of the Taiwan Institute of Chemical Engineers.

[5]  R. Ningthoujam,et al.  Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition , 2018, Scientific Reports.

[6]  O. Perales-Pérez,et al.  Optimizing Processing Conditions to Produce Cobalt Ferrite Nanoparticles of Desired Size and Magnetic Properties , 2017 .

[7]  S. Upadhyay,et al.  Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles , 2016 .

[8]  C. Jesus,et al.  Intrinsic dependence of the magnetic properties of CoFe2O4 nanoparticles prepared via chemical methods with addition of chelating agents , 2015 .

[9]  A. Barman,et al.  Magnetic nanoparticles: a subject for both fundamental research and applications , 2016 .

[10]  Ihab M. Obaidat,et al.  Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications , 2013, International journal of molecular sciences.

[11]  R. Jose,et al.  Iron oxide magnetic nanoparticles: A short review , 2012 .

[12]  M. M. Mojtahedi,et al.  Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides , 2012 .

[13]  Ben Zhong Tang,et al.  Biocompatible Nanoparticles with Aggregation‐Induced Emission Characteristics as Far‐Red/Near‐Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications , 2012 .

[14]  Yanglong Hou,et al.  Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. , 2011, Chemical communications.

[15]  L. Rossi,et al.  Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized , 2010 .

[16]  N. Shah,et al.  Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles , 2009 .

[17]  T. Osaka,et al.  New Trends in Nanoparticles: Syntheses and Their Applications to Fuel Cells, Health Care, and Magnetic Storage , 2008 .

[18]  H. Zeng,et al.  Syntheses, Properties, and Potential Applications of Multicomponent Magnetic Nanoparticles , 2008 .

[19]  Y. Köseoǧlu,et al.  Size and surface effects on magnetic properties of Fe3O4 nanoparticles. , 2008, Journal of nanoscience and nanotechnology.

[20]  M. Knobel,et al.  Annealing effects on 5 nm iron oxide nanoparticles. , 2007, Journal of nanoscience and nanotechnology.

[21]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[22]  A. Roig,et al.  Structural and magnetic properties of bulk alloys and aerosol nanoparticles in the Fe100−xCrx system , 2006 .

[23]  M. Knobel,et al.  Effect of dipolar interaction observed in iron-based nanoparticles , 2005 .

[24]  A. Hütten,et al.  Magnetic nanoparticles: applications beyond data storage. , 2005, Nature materials.

[25]  M. Novak,et al.  Temperature dependence of the coercive field in single-domain particle systems , 2003, cond-mat/0310604.

[26]  Manfred Martin,et al.  In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3) , 2000 .

[27]  Lucas Bleicher,et al.  Development of a graphical interface for the Rietveld refinement program DBWS , 2000 .

[28]  J. E. Mark,et al.  Immobilization of palladium nanoparticles on latex supports and their potential for catalytic applications , 1999 .

[29]  Babeş,et al.  Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. , 1999, Journal of colloid and interface science.

[30]  R. Crooks,et al.  Dendrimer‐Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis , 1999 .

[31]  K. Trohidou,et al.  Magnetic properties of dipolar interacting single-domain particles , 1998 .

[32]  R. A. Young,et al.  DBWS-9411 – an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers , 1995 .

[33]  Roy W. Chantrell,et al.  Measurements of particle size distribution parameters in ferrofluids , 1978 .

[34]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[35]  Louis Néel,et al.  Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh , 1950 .