Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell

We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

[1]  Periodic dielectric structures for light-trapping in InGaAs/GaAs quantum well solar cells. , 2013, Optics express.

[2]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[3]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[4]  Thin-Film InGaAs/GaAsP MQWs Solar Cell With Backside Nanoimprinted Pattern for Light Trapping , 2014, IEEE Journal of Photovoltaics.

[5]  J. P. Connolly,et al.  Advances in Bragg stack quantum well solar cells , 2005 .

[6]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[7]  Y. Nakano,et al.  Strain-compensation measurement and simulation of InGaAs/GaAsP multiple quantum wells by metal organic vapor phase epitaxy using wafer-curvature , 2011 .

[8]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[9]  Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings , 2013 .

[10]  J. P. Connolly,et al.  Quantum well solar cells , 1993, Physica E: Low-dimensional Systems and Nanostructures.

[11]  E. Yu,et al.  Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells , 2012 .

[12]  Y. Nakano,et al.  Suppressed lattice relaxation during InGaAs/GaAsP MQW growth with InGaAs and GaAs ultra-thin interlayers , 2012 .

[13]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[14]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[15]  C. Stender,et al.  Demonstration of multiple substrate reuses for inverted metamorphic solar cells , 2013, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[16]  Yoshiaki Nakano,et al.  A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration , 2013 .

[17]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[18]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[19]  Tomah Sogabe,et al.  Recent progress on quantum dot intermediate band solar cells , 2013, IEICE Electron. Express.

[20]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[21]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[22]  A. Lemaître,et al.  Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers , 2014 .