Self-ignition of amorphous alloys activated by exothermic crystallization

[1]  Larry K. B. Li,et al.  Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys , 2020 .

[2]  Weihua Wang,et al.  Highly energetic and flammable metallic glasses , 2020 .

[3]  V. K. Saxena,et al.  A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine , 2017 .

[4]  David L. Frost,et al.  Direct combustion of recyclable metal fuels for zero-carbon heat and power , 2015 .

[5]  W. Wang,et al.  High surface mobility and fast surface enhanced crystallization of metallic glass , 2015 .

[6]  T. Spassov,et al.  High glass forming ability correlated with microstructure and hydrogen storage properties of a Mg–Cu–Ag–Y glass , 2014 .

[7]  M. Gupta,et al.  Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications , 2012 .

[8]  E. Dreizin,et al.  Combustion characteristics of micron-sized aluminum particles in oxygenated environments , 2011 .

[9]  M. Demetriou,et al.  Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing , 2011, Science.

[10]  W. Focke,et al.  Manganese as Fuel in Slow‐Burning Pyrotechnic Time Delay Compositions , 2010 .

[11]  J. Forrest,et al.  Measuring the Surface Dynamics of Glassy Polymers , 2008, Science.

[12]  E. Dreizin,et al.  Ignition of aluminum-rich Al–Ti mechanical alloys in air , 2006 .

[13]  A. Marshall,et al.  Characterizing the ignition hazard from cigarette lighter flames , 2005 .

[14]  M. Telford The case for bulk metallic glass , 2004 .

[15]  D. Eliezer,et al.  Absorption/desorption behavior of hydrogen and deuterium in a Pd-coated Zr-based amorphous alloy , 2003 .

[16]  E. Dreizin,et al.  Constant pressure flames of aluminum and aluminum-magnesium mechanical alloy aerosols in microgravity , 2002 .

[17]  E. Dreizin,et al.  Preparation and characterization of energetic Al-Mg mechanical alloy powders , 2002 .

[18]  E. Dreizin,et al.  Phase changes in metal combustion , 2000 .

[19]  R. Ritchie,et al.  Light emission during fracture of a Zr–Ti–Ni–Cu–Be bulk metallic glass , 1999 .

[20]  C. Liu,et al.  Test environments and mechanical properties of Zr-base bulk amorphous alloys , 1998 .

[21]  A. L. Greer Metallic Glasses , 1995, Science.

[22]  Liberman,et al.  Stability of solid propellant combustion. , 1994, Physical review letters.

[23]  F. Sommer,et al.  Structural enthalpy relaxation in the glass transition range , 1994 .

[24]  D. Ensor,et al.  Size Distribution of Fine Particles from Coal Combustion , 1982, Science.

[25]  L. Lamparski,et al.  Combustion of Several 2,4,5-Trichlorophenoxy Compounds: Formation of 2,3,7,8-Tetrachlorodibenzo-p-dioxin , 1977, Science.

[26]  E. Goldberg,et al.  Fossil Fuel Combustion and the Major Sedimentary Cycle , 1971, Science.

[27]  C. T. Chamberlain,et al.  Combustion of Coal in Oxygen , 1967, Nature.

[28]  C. Tipper,et al.  Slow Combustion of Cyclopropane , 1952, Nature.

[29]  R. Silver,et al.  Application of the Reynolds Analogy to Combustion of Solid Fuels , 1950, Nature.

[30]  G. W. Bridger,et al.  Combustion of Carbon and Carbon Monoxide , 1946, Nature.

[31]  E. Mardles The Slow Combustion of Methane and Ethane. , 1931, Nature.

[32]  R. Spence The Slow Combustion of Acetylene. , 1931, Nature.

[33]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[34]  R. Ritchie,et al.  Mechanism for Light Emission During Fracture of a Zr-Ti-Cu-Ni-Be Bulk Metallic Glass: Temperature Measurements in Air and Nitrogen , 1998 .

[35]  A. Maček,et al.  Ignition and combustion of aluminium particles in hot ambient gases , 1962 .

[36]  G. A. E. GODSAVE Rates of Combustion of Solid Fuel Particles , 1953, Nature.

[37]  D. Spalding,et al.  Combustion of Liquid Fuels , 1950, Nature.