Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges

Today, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions represent approximately 98 % of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase significantly in this twenty-first century. CO2 represents the most important GHG with approximately 77 % of the total GHG emissions (considering its global warming potential) worldwide, while CH4 and N2O are emitted to a lesser extent (14 and 8 %, respectively) but exhibit global warming potentials 23 and 298 times higher than that of CO2, respectively. Most members of the United Nations, based on the urgent need to maintain the global average temperature 2 °C above preindustrial levels, have committed themselves to significantly reduce their GHG emissions. In this context, an active abatement of these emissions will help to achieve these target emission cuts without compromising industrial growth. Nowadays, there are sufficient empirical evidence to support that biological technologies can become, if properly tailored, a low-cost and environmentally friendly alternative to physical/chemical methods for the abatement of GHGs. This study constitutes a state-of-the-art review of the microbiology (biochemistry, kinetics, and waste-to-value processes) and bioreactor technology of CH4, N2O, and CO2 abatement. The potential and limitations of biological GHG degradation processes are critically discussed, and the current knowledge gaps and technology niches in the field are identified.

[1]  Y. Chisti,et al.  Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga , 2011 .

[2]  H. Saiki,et al.  Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. , 2000, Biotechnology and bioengineering.

[3]  F. Kapteijn,et al.  SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants , 2004 .

[4]  J. Granger,et al.  Accumulation of nitrogen oxides in copper‐limited cultures of denitrifying bacteria , 2003 .

[5]  S. Revah,et al.  Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. , 2011, Journal of hazardous materials.

[6]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[7]  Jo‐Shu Chang,et al.  Perspectives on microalgal CO₂-emission mitigation systems--a review. , 2011, Biotechnology advances.

[8]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[9]  A. Ravishankara,et al.  Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century , 2009, Science.

[10]  R. Whittenbury,et al.  The Methylotrophic Bacteria , 1981 .

[11]  J. M. Fernández-Sevilla,et al.  Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms , 2012, Biotechnology and bioengineering.

[12]  J. C. Merchuk,et al.  Photobioreactor Design and Fluid Dynamics , 2007 .

[13]  P. Dunfield,et al.  Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH , 1993 .

[14]  Nigel W.T. Quinn,et al.  A Realistic Technology and Engineering Assessment of Algae Biofuel Production , 2010 .

[15]  M. Bender,et al.  Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios , 1992 .

[16]  D. Graham,et al.  Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors , 2004, Microbial Ecology.

[17]  A. Melis,et al.  Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage ? , 1999, Trends in plant science.

[18]  Nikiema Josiane,et al.  The influence of the gas flow rate during methane biofiltration on an inorganic packing material , 2009 .

[19]  A. Laskin,et al.  Growth and Polysaccharide Production by Methylocystis parvus OBBP on Methanol , 1979, Applied and environmental microbiology.

[20]  H. Siegrist,et al.  Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. , 2012, Water research.

[21]  G. Sayler,et al.  Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1 , 1993, Applied and environmental microbiology.

[22]  Raúl Muñoz,et al.  A comparative analysis of odour treatment technologies in wastewater treatment plants. , 2011, Environmental science & technology.

[23]  E. Molina Grima,et al.  Utilization of Anabaena sp. in CO₂ removal processes: modelling of biomass, exopolysaccharides productivities and CO₂ fixation rate. , 2012, Applied microbiology and biotechnology.

[24]  Michael Y. Galperin,et al.  Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia , 2008, Biology Direct.

[25]  E. Rodríguez,et al.  Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities , 2012, Bioprocess and Biosystems Engineering.

[26]  N. Wrage,et al.  Role of nitrifier denitrification in the production of nitrous oxide , 2001 .

[27]  A. Satsuma,et al.  Inhibitory effect of oxygen on catalytic removal of nitrous oxide with methane , 1997 .

[28]  R. Smith,et al.  Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale , 2009, Biotechnology progress.

[29]  T. Treude,et al.  Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California , 2010 .

[30]  H. Herzog,et al.  What future for carbon capture and sequestration? , 2001, Environmental science & technology.

[31]  K. Chandran,et al.  N2O emissions from activated sludge processes, 2008-2009: results of a national monitoring survey in the United States. , 2010, Environmental science & technology.

[32]  A. Carvalho,et al.  Microalgal Reactors: A Review of Enclosed System Designs and Performances , 2006, Biotechnology progress.

[33]  M. Heitz,et al.  Methane treatment in biotrickling filters packed with inert materials in presence of a non-ionic surfactant , 2012 .

[34]  Tsvi Tlusty,et al.  Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape , 2010, Proceedings of the National Academy of Sciences.

[35]  R. Craggs,et al.  Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production , 2012, Journal of Applied Phycology.

[36]  H Guterman,et al.  A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs , 2000, Biotechnology and bioengineering.

[37]  J. Doucha,et al.  Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor , 2005, Journal of Applied Phycology.

[38]  Ming L. Wu,et al.  Nitrite-driven anaerobic methane oxidation by oxygenic bacteria , 2010, Nature.

[39]  Jeffrey N. Carey,et al.  Feasibility of atmospheric methane removal using methanotrophic biotrickling filters , 2009, Applied Microbiology and Biotechnology.

[40]  Charles S Cockell,et al.  The evolution of inorganic carbon concentrating mechanisms in photosynthesis , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  L. Nedbal,et al.  Photobioreactor for cultivation and real‐time, in‐situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms , 2009 .

[42]  A. Richmond,et al.  Lipid and biomass production by the halotolerant microalga Nannochloropsis salina , 1987 .

[43]  J. Costa,et al.  Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide , 2007 .

[44]  H. Dalton Methane Oxidation by Methanotrophs , 1992 .

[45]  J. Dewulf,et al.  A hollow fiber membrane photo‐bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach , 2010 .

[46]  J. Dewulf,et al.  Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. , 2010, Trends in biotechnology.

[47]  Joel L Cuello,et al.  Carbon Dioxide Mitigation using Thermophilic Cyanobacteria , 2007 .

[48]  Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. , 1991, FEMS microbiology letters.

[49]  Yuan-Kun Lee,et al.  CELL CYCLE AND ACCUMULATION OF ASTAXANTHIN IN HAEMATOCOCCUS LACUSTRIS (CHLOROPHYTA) 1 , 1994 .

[50]  Sunil Kumar,et al.  Field-scale operation of methane biofiltration systems to mitigate point source methane emissions. , 2011, Environmental pollution.

[51]  R. Knowles,et al.  Growth of methanotrophs in methane and oxygen counter gradients , 1995 .

[52]  J.R. Woertz,et al.  A Fungal Vapor-Phase Bioreactor for the Removal of Nitric Oxide from Waste Gas Streams , 2001, Journal of the Air and Waste Management Association.

[53]  Sukhwan Yoon,et al.  An assay for screening microbial cultures for chalkophore production. , 2010, Environmental microbiology reports.

[54]  K. Chandran,et al.  Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes , 2011, Biotechnology and bioengineering.

[55]  J. Brannan,et al.  The Effect of Growth Conditions on Intracytoplasmic Membranes and Methane Mono-oxygenase Activities in Methylosinus trichosporium OB3b , 1981 .

[56]  R. Melse,et al.  Biofiltration for mitigation of methane emission from animal husbandry. , 2005, Environmental science & technology.

[57]  Benoit Guieysse,et al.  Algal-bacterial processes for the treatment of hazardous contaminants: a review. , 2006, Water research.

[58]  A. Richmond Handbook of microalgal culture: biotechnology and applied phycology. , 2004 .

[59]  K. Semple,et al.  Biodegradation of aromatic compounds by microalgae , 1999 .

[60]  N. T. Eriksen The technology of microalgal culturing , 2008, Biotechnology Letters.

[61]  J. Rintala,et al.  Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. , 2008, Waste management.

[62]  R. Craggs,et al.  Potential biogas scrubbing using a high rate pond. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[63]  V. Orphan,et al.  Manganese- and Iron-Dependent Marine Methane Oxidation , 2009, Science.

[64]  F. E. Round,et al.  Progress in Phycological Research , 1994 .

[65]  H. Hermansyah,et al.  Biofiltration of Nitrous Oxide Using Cow-Manure Based Compost as Medium Filter , 2012 .

[66]  F. G. Acién,et al.  Production cost of a real microalgae production plant and strategies to reduce it. , 2012, Biotechnology advances.

[67]  R. N. Singh,et al.  Development of suitable photobioreactor for algae production – A review , 2012 .

[68]  Yoshihiro Tsuchiya,et al.  Invention of outdoor closed type photobioreactor for microalgae , 2006 .

[69]  A. Richmond,et al.  Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae) , 2000 .

[70]  J. Semrau,et al.  Methane and Trichloroethylene Degradation byMethylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase , 1998, Applied and Environmental Microbiology.

[71]  M. A. Packer,et al.  Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy , 2009 .

[72]  L. Joergensen The methane mono-oxygenase reaction system studied in vivo by membrane-inlet mass spectrometry. , 1985, The Biochemical journal.

[73]  A. Rosenzweig,et al.  Dual Pathways for Copper Uptake by Methanotrophic Bacteria* , 2011, The Journal of Biological Chemistry.

[74]  J. Bowman,et al.  Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. , 1997, Microbiology.

[75]  Agricultural Ecosystem Effects on Trace Gases and Global Climate Change , 1993 .

[76]  S. Dedysh,et al.  Acidophilic Methanotrophic Communities fromSphagnum Peat Bogs , 1998, Applied and Environmental Microbiology.

[77]  Mario R. Tredici,et al.  Photobiology of microalgae mass cultures: understanding the tools for the next green revolution , 2010 .

[78]  R. Whittenbury,et al.  Fine structure of methane and other hydrocarbon-utilizing bacteria. , 1970, Journal of general microbiology.

[79]  J. Seckbach,et al.  Sterols and Chloroplast Structure of Cyanidium caldarium. , 1972, Plant physiology.

[80]  M. Heitz,et al.  A new method to determine the microbial kinetic parameters in biological air filters , 2008 .

[81]  T. Kristensen,et al.  A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments , 2011, BMC Microbiology.

[82]  Hiroyo Matsumoto,et al.  Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler , 1993 .

[83]  L. Gouveia,et al.  Evolution of pigment composition in Chlorella vulgaris , 1996 .

[84]  J. Moroney,et al.  A novel α‐type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2 , 1998 .

[85]  S. Lind,et al.  Quantification of greenhouse gas emissions from sludge treatment wetlands. , 2012, Water research.

[86]  Kinga Skalska,et al.  Trends in NO(x) abatement: a review. , 2010, The Science of the total environment.

[87]  S. Aiba,et al.  Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus , 1981 .

[88]  P. Falkowski,et al.  Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition , 1998, Photosynthesis Research.

[89]  S. Schneider,et al.  Climate Change 2007 Synthesis report , 2008 .

[90]  Chunzhao Liu,et al.  Microalgal bioreactors: Challenges and opportunities , 2009 .

[91]  G. C. Zittelli,et al.  Efficiency of sunlight utilization: tubular versus flat photobioreactors , 1998, Biotechnology and bioengineering.

[92]  Pertti J Viskari,et al.  Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. , 2003, Analytical biochemistry.

[93]  Stefan Schouten,et al.  Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. , 2009, Environmental microbiology reports.

[94]  W. Reeburgh Oceanic Methane Biogeochemistry , 2007 .

[95]  R. Haubrichs,et al.  Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. , 2006, Waste management.

[96]  R. C. Hammond,et al.  Methane-Oxidizing Microorganisms , 1981, Microbiological reviews.

[97]  R. Hill,et al.  Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis , 1960, Nature.

[98]  J. R. Quayle The Metabolism of One-Carbon Compounds by Micro-Organisms , 1972 .

[99]  G. Lorimer,et al.  Ribulose-1,5-bisphosphate carboxylase-oxygenase. , 1983, Annual review of biochemistry.

[100]  A. Lehninger Principles of Biochemistry , 1984 .

[101]  John R. Benemann,et al.  CO2 mitigation with microalgae systems , 1997 .

[102]  F B Metting,et al.  Biodiversity and application of microalgae , 1996, Journal of Industrial Microbiology.

[103]  Ryan C. Kunz,et al.  Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath. , 2005, Microbiology.

[104]  L. Staehelin Chloroplast Structure and Supramolecular Organization of Photosynthetic Membranes , 1986 .

[105]  Isao Karube,et al.  Tolerance of microalgae to high CO2 and high temperature , 1992 .

[106]  W. Verstraete,et al.  Biocathodic nitrous oxide removal in bioelectrochemical systems. , 2011, Environmental science & technology.

[107]  J. Semrau Bioremediation via Methanotrophy: Overview of Recent Findings and Suggestions for Future Research , 2011, Front. Microbio..

[108]  Ming L. Wu,et al.  A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'. , 2011, Biochemical Society transactions.

[109]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[110]  Raúl Muñoz,et al.  Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. , 2009, Bioresource technology.

[111]  W. Reeburgh,et al.  Moisture and temperature sensitivity of CH4 oxidation in boreal soils , 1996 .

[112]  H. Dalton Methane Oxidation by Methanotrophs Physiological and Mechanistic Implications , 1992 .

[113]  E. Arvin,et al.  Modelling the growth of a methanotrophic biofilm: Estimation of parameters and variability , 1999, Biodegradation.

[114]  Hideo Tanaka,et al.  Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors , 2000, Journal of Applied Phycology.

[115]  James Barber,et al.  Molecular to global photosynthesis , 2004 .

[116]  W. Verstraete,et al.  Strategies to mitigate N2O emissions from biological nitrogen removal systems. , 2012, Current opinion in biotechnology.

[117]  Brady D. Lee,et al.  Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams , 2002 .

[118]  V. Orphan,et al.  Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide , 2011, Front. Microbio..

[119]  R. Knowles,et al.  Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers , 1989, Microbiological reviews.

[120]  D. Hall,et al.  Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. , 2003, Biotechnology and bioengineering.

[121]  Daniel Ibraim Pires Atala,et al.  Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms , 2000 .

[122]  Sergio Bordel,et al.  Methane degradation in two-phase partition bioreactors , 2009 .

[123]  Bo H. Svensson,et al.  Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses , 1998 .

[124]  P. Kjeldsen,et al.  Methane oxidation at low temperatures in soil exposed to landfill gas , 2000 .

[125]  Daniel Chaumont,et al.  Biotechnology of algal biomass production: a review of systems for outdoor mass culture , 1993, Journal of Applied Phycology.

[126]  M. Heitz,et al.  Biofiltration of methane at low concentrations representative of the piggery industry—Influence of the methane and nitrogen concentrations , 2011 .

[127]  M. Kodama,et al.  A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture , 1993 .

[128]  François Roch,et al.  Inability of bacteria to degrade low concentrations of toluene in water , 1997 .

[129]  D. R. Raman,et al.  Laboratory scale evaluation of volatile organic compound emissions as indication of swine carcass degradation inside biosecure composting units. , 2010, Bioresource technology.

[130]  M. Bender,et al.  Methane oxidation activity in various soils and freshwater sediments: Occurrence, characteristics, vertical profiles, and distribution on grain size fractions , 1994 .

[131]  K. Sublette,et al.  Reduction of nitric oxide by denitrifying bacteria , 1993, Applied biochemistry and biotechnology.

[132]  Maria J Barbosa,et al.  Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. , 2005, Biotechnology and bioengineering.

[133]  Ryszard Brzezinski,et al.  Elimination of methane generated from landfills by biofiltration: a review , 2007 .

[134]  C. Brantner,et al.  Activity of methanotrophic bacteria in Green Bay sediments , 1995 .

[135]  M. Lidstrom,et al.  Methane Oxidation in Lake Superior Sediments , 1989 .

[136]  A. Richmond,et al.  Biological Principles of Mass Cultivation , 2007 .

[137]  L. Ehrenberg,et al.  A Methane-Consuming Green Alga. , 1967 .

[138]  R. Conrad,et al.  Differential Effects of Nitrogenous Fertilizers on Methane-Consuming Microbes in Rice Field and Forest Soils , 2006, Applied and Environmental Microbiology.

[139]  T. Stephenson,et al.  Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. , 2000, Biotechnology advances.

[140]  Sukhwan Yoon,et al.  Methanotrophs and copper. , 2010, FEMS microbiology reviews.

[141]  Melvin Calvin Forty years of photosynthesis and related activities , 1997 .

[142]  Julia Gebert,et al.  Kinetics of microbial landfill methane oxidation in biofilters. , 2003, Waste management.

[143]  S. Long,et al.  What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? , 2008, Current opinion in biotechnology.

[144]  P. Dunfield,et al.  Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. , 2005, Environmental microbiology.

[145]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[146]  R. Conrad,et al.  Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. , 2000, Environmental microbiology.

[147]  Y. Matsuda,et al.  Regulation of dissolved inorganic carbon transport in green algae , 1998 .

[148]  A. De Visscher,et al.  Methane oxidation and formation of EPS in compost: effect of oxygen concentration. , 2004, Environmental pollution.

[149]  R. S. Hanson,et al.  Isolation and Characterization of Methane-utilizing Yeasts , 1979 .

[150]  J. Bogner,et al.  Methane oxidation in landfill cover soils. , 2010 .

[151]  Graziella Chini Zittelli,et al.  Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns , 2006 .

[153]  A. Melis,et al.  Optical properties of microalgae for enhanced biofuels production. , 2008, Optics express.

[154]  Montserrat Zamorano,et al.  STUDY OF THE ENERGY POTENTIAL OF THE BIOGAS PRODUCED BY AN URBAN WASTE LANDFILL IN SOUTHERN SPAIN , 2007 .

[155]  Sergio Hernández,et al.  Development of operational strategies to remove carbon dioxide in photobioreactors , 2009 .

[156]  R. Muñoz,et al.  A comparative study of solid and liquid non‐aqueous phases for the biodegradation of hexane in two‐phase partitioning bioreactors , 2010, Biotechnology and bioengineering.

[157]  M. Deshusses,et al.  Biofiltration for air pollution control , 1998 .

[158]  Hu Qiang,et al.  Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria) , 1998 .

[159]  D. Graham,et al.  Methanobactin, a Copper-Acquisition Compound from Methane-Oxidizing Bacteria , 2004, Science.

[160]  Sanjay B. Shah,et al.  Design and Operation of a Biofilter for Treatment of Swine House Pit Ventilation Exhaust , 2011 .

[161]  M. Bender,et al.  Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity , 1995 .

[162]  U. Zanke,et al.  Methane oxidation in a landfill cover with capillary barrier. , 2005, Waste management.

[163]  J. G. Kuenen,et al.  Confirmation of 'aerobic denitrification' in batch cultures, using gas chromatography and 15N mass spectrometry , 1995 .

[164]  Zhiguo Yuan,et al.  Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. , 2010, Water research.

[165]  A. Hooper,et al.  Hydroxylamine oxidoreductase of Nitrosomonas. Production of nitric oxide from hydroxylamine. , 1979, Biochimica et biophysica acta.

[166]  Utilization of Anabaena sp. in CO2 removal processes , 2012, Applied Microbiology and Biotechnology.

[167]  M. V. van Loosdrecht,et al.  Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. , 2008, Water research.

[168]  J. Bowman The Methanotrophs — The Families Methylococcaceae and Methylocystaceae , 2006 .

[169]  J. Moroney,et al.  How Do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? , 1999, Plant physiology.

[170]  Sachio Miyairi CO2 assimilation in a thermophilic cyanobacterium , 1995 .

[171]  K. Gerdes,et al.  Copper‐dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium , 1997, Molecular Microbiology.

[172]  Hee-Mock Oh,et al.  Selection of microalgae for lipid production under high levels carbon dioxide. , 2010, Bioresource technology.

[173]  K. Kovács,et al.  A novel thermophilic methane-oxidising γ-Proteobacterium , 1999 .

[174]  Masahiko Morita,et al.  Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. , 2002, Biotechnology and bioengineering.

[175]  J. M. Fernández-Sevilla,et al.  Medium recycling for Nannochloropsis gaditana cultures for aquaculture. , 2013, Bioresource technology.

[176]  Ludmila Chistoserdova,et al.  Modularity of methylotrophy, revisited. , 2011, Environmental microbiology.

[177]  N. A. Kumar,et al.  A Perspective on the Biotechnological Potential of Microalgae , 2008, Critical reviews in microbiology.

[178]  Jorge Alberto Vieira Costa,et al.  Carbon dioxide fixation by microalgae cultivated in open bioreactors , 2011 .

[179]  J. la Cour Jansen,et al.  Dynamics of nitrogen oxides emission from a full-scale sludge liquor treatment plant with nitritation. , 2011, Water science and technology : a journal of the International Association on Water Pollution Research.

[180]  Jim Boswell Understand the capabilities of bio-oxidation , 2002 .

[181]  T. Kodama,et al.  Acidic Polysaccharide Production from Methane by a New Methane-oxidizing Bacterium H-2 , 1983 .

[182]  R. Ueda,et al.  Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments , 1997, Journal of Applied Phycology.

[183]  H. Dalton,et al.  The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. , 2003, The Biochemical journal.

[184]  R. Lebrero,et al.  A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. , 2012, Biotechnology advances.

[185]  Clemens Posten,et al.  Design principles of photo‐bioreactors for cultivation of microalgae , 2009 .

[186]  Tori M. Hoehler,et al.  Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium , 1994 .

[187]  F. G. Fernández,et al.  Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. , 2009 .

[188]  I. Levin,et al.  Methane consumption in aerated soils of the temperate zone , 1990 .

[189]  J. Ogbonna,et al.  Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: A method of achieving continuous cell growth under light/dark cycles , 1998 .

[190]  M. Kalyuzhnaya,et al.  Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. , 1999, Systematic and applied microbiology.

[191]  M. Alam,et al.  Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia , 2007, Nature.

[192]  Soyoung Park,et al.  Biofiltration for Reducing Methane Emissions from Modern Sanitary Landfills at the Low Methane Generation Stage , 2009 .

[193]  W. Apel,et al.  The use of denitrifying bacteria for the removal of nitrogen oxides from combustion gases , 1993 .

[194]  T. Iverson Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. , 2006, Current opinion in chemical biology.

[195]  M. Chou,et al.  Biotrickling Filtration of Nitric Oxide , 2000, Journal of the Air & Waste Management Association.

[196]  M. Lidstrom,et al.  Methylotrophs: genetics and commercial applications. , 1990, Annual review of microbiology.

[197]  R. S. Hanson,et al.  Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. , 1992, International journal of systematic bacteriology.

[198]  Meirion Thomas,et al.  Plant Physiology. 3rd. Ed. , 1949 .

[199]  P. Wood Nitrification as a bacterial energy source , 1986 .

[200]  A. Kallistova,et al.  Methane Oxidation in Landfill Cover Soil , 2005, Microbiology.

[201]  R. S. Hanson,et al.  Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria , 1994, Applied and environmental microbiology.

[202]  K. A. Sandbeck,et al.  Rapid Methane Oxidation in a Landfill Cover Soil , 1990, Applied and environmental microbiology.

[203]  Raúl Muñoz,et al.  Two-phase partitioning bioreactors in environmental biotechnology , 2009, Applied Microbiology and Biotechnology.

[204]  Maria J Barbosa,et al.  Microalgal production--a close look at the economics. , 2011, Biotechnology advances.

[205]  J. Gebert,et al.  Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. , 2006, Waste management.

[206]  Kaoru Eguchi,et al.  Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor , 1996 .

[207]  M. Leybourne,et al.  Rare Earth Elements (REE) and Nd and Sr Isotopes in Groundwater and Suspended Sediments from the Bathurst Mining Camp, New Brunswick: Water-Rock Reactions and Elemental Fractionation , 2005 .

[208]  P. Lechner,et al.  Alternative approach to the elimination of greenhouse gases from old landfills , 1999 .

[209]  J. Costa,et al.  Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors , 2007, Biotechnology Letters.

[210]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[211]  M. V. van Loosdrecht,et al.  Nitrous oxide emission during wastewater treatment. , 2009, Water research.

[212]  C. Ugwu,et al.  Photobioreactors for mass cultivation of algae. , 2008, Bioresource technology.

[213]  K. Tanaka,et al.  Abatement technologies for N2O emissions in the adipic acid industry , 2000 .

[214]  C. Anthony,et al.  The Biochemistry of Methylotrophs , 1982 .

[215]  Werner Liesack,et al.  Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. , 2002, International journal of systematic and evolutionary microbiology.

[216]  Tarek Abichou,et al.  Methane oxidation in water-spreading and compost biofilters , 2006, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[217]  Z. Cohen,et al.  Chemicals from Microalgae , 1999 .

[218]  A. Richmond,et al.  CRC Handbook of microalgal mass culture , 1986 .

[219]  D. B. Nedwell,et al.  Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms , 1995, Applied and environmental microbiology.

[220]  G. Tallec,et al.  Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. , 2008, Bioresource technology.

[221]  A. Pol,et al.  Methanotrophy below pH 1 by a new Verrucomicrobia species , 2007, Nature.

[222]  Charlotte Scheutz,et al.  Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions , 2009, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[223]  Y. Trotsenko,et al.  Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. , 2005, International journal of systematic and evolutionary microbiology.

[224]  S. Revah,et al.  Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. , 2013, Bioresource technology.

[225]  Hermann Hofbauer,et al.  Decomposition of nitrous oxide at medium temperatures , 2000 .

[226]  J. R. Coleman,et al.  Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from the Cyanobacterium Synechococcus PCC7942. , 1992, Plant physiology.

[227]  Benoit Guieysse,et al.  Outdoor cultivation of temperature‐tolerant Chlorella sorokiniana in a column photobioreactor under low power‐input , 2013, Biotechnology and bioengineering.

[228]  Tadashi Hattori,et al.  Effects of methane and oxygen on decomposition of nitrous oxide over metal oxide catalysts , 2000 .

[229]  Antonio Vallecillo,et al.  The use of methane as a sole carbon source for wastewater denitrification , 1997 .

[230]  E. Molina Grima,et al.  Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? , 2012, Applied Microbiology and Biotechnology.

[231]  R. S. Hanson Ecology and Diversity of Methylotrophic Organisms , 1980 .

[232]  M. Lidstrom,et al.  Microbial Growth on C1 Compounds , 1996, Springer Netherlands.

[233]  G. Espie,et al.  Physiological aspects of CO, and HC0,- transport by cyanobacteria: a review1 , 1990 .

[234]  K. Miyamoto,et al.  Improvement of microalgal NOx removal in bubble column and airlift reactors , 1998 .

[235]  Jo‐Shu Chang,et al.  Strategies to enhance cell growth and achieve high‐level oil production of a Chlorella vulgaris isolate , 2010, Biotechnology progress.

[236]  K. Miyauchi,et al.  Potential of Aerobic Denitrification by Pseudomonas stutzeri TR2 To Reduce Nitrous Oxide Emissions from Wastewater Treatment Plants , 2010, Applied and Environmental Microbiology.

[237]  D. Das,et al.  Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. , 2011, Bioresource technology.

[238]  M. Veillette,et al.  Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry , 2012, Applied Microbiology and Biotechnology.

[239]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[240]  Neslihan Akdeniz,et al.  Biofilter performance of pine nuggets and lava rock as media. , 2011, Bioresource technology.

[241]  H. Herzog Peer Reviewed: What Future for Carbon Capture and Sequestration? , 2001 .

[242]  C. D. Plessis,et al.  Empirical model for methane oxidation using a composted pine bark biofilter , 2003 .

[243]  J. Lipscomb,et al.  Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle. , 2001, Biochemistry.

[244]  R. S. Hanson,et al.  Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions , 1978, Journal of bacteriology.

[245]  J. Raven,et al.  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.

[246]  J. Costa,et al.  Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. , 2007, Journal of biotechnology.

[247]  Hiroshi Tamiya,et al.  Mass Culture of Algae , 1957 .

[248]  Raymond M. Gladue,et al.  Microalgal feeds for aquaculture , 1993, Journal of Applied Phycology.

[249]  J. Lipscomb Biochemistry of the soluble methane monooxygenase. , 1994, Annual review of microbiology.

[250]  L. Barsanti,et al.  Algae: Anatomy, Biochemistry, and Biotechnology , 2005 .

[251]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[252]  Y. Chisti,et al.  Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance , 2001 .

[253]  Y. Chisti,et al.  Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae , 1999 .

[254]  M. Badger,et al.  Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO(2)-Requiring Phenotype : Evidence for a Central Role for Carboxysomes in the CO(2) Concentrating Mechanism. , 1989, Plant physiology.

[255]  Sergio Revah,et al.  Two-phase partitioning bioreactors for treatment of volatile organic compounds. , 2007, Biotechnology advances.

[256]  J. Murrell,et al.  Microbial growth on C[1] compounds , 1993 .

[257]  D. Leak,et al.  Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: Studies in batch and continuous cultures , 2004, Biotechnology Letters.

[258]  C. Posten,et al.  Developments and perspectives of photobioreactors for biofuel production , 2010, Applied Microbiology and Biotechnology.

[259]  Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. , 2000, Biotechnology and bioengineering.

[260]  L. Staehelin,et al.  Photosynthetic membranes and light harvesting systems , 1986 .

[261]  E. Boyd,et al.  The Membrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus Bath , 2003, Journal of bacteriology.