MULTICOMPONENT SUBSPACE CHIRP PARAMETER ESTIMATION USING DISCRETE FRACTIONAL FOURIER ANALYSIS

The Discrete Fractional Fourier Transform is a useful tool for multicomponent chirp parameter estimation, however much of the current work ignores the presense of noise. In recent work, a projection-subspace approach to DFrFTbased multicomponent chirp parameter estimation was proposed, to exploit the robustness of subspace decomposition methods. This paper refines the prior projection-subspace work to overcome limitations caused by the projection preprocessing, and presents a quantitative analysis of its per!

[1]  B. Santhanam,et al.  The centered discrete fractional Fourier transform and linear chirp signals , 2004, 3rd IEEE Signal Processing Education Workshop. 2004 IEEE 11th Digital Signal Processing Workshop, 2004..

[2]  Cagatay Candan,et al.  Digital Computation of Linear Canonical Transforms , 2008, IEEE Transactions on Signal Processing.

[3]  Balu Santhanam,et al.  On a pseudo-subspace framework for discrete Fractional Fourier transform based chirp parameter estimation , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[4]  Chien-Cheng Tseng,et al.  Discrete fractional Fourier transform based on orthogonal projections , 1999, IEEE Trans. Signal Process..

[5]  Luís B. Almeida An introduction to the angular Fourier transform , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Louis-Gilles Durand,et al.  Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model , 2001, IEEE Transactions on Biomedical Engineering.

[7]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[8]  Etienne Barnard,et al.  Two-dimensional superresolution radar imaging using the MUSIC algorithm , 1994 .

[9]  K. S. Arun,et al.  Parameter estimation for superimposed chirp signals , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Juan G. Vargas-Rubio,et al.  On the multiangle centered discrete fractional Fourier transform , 2005, IEEE Signal Processing Letters.

[11]  James H. McClellan,et al.  The discrete rotational Fourier transform , 1996, IEEE Trans. Signal Process..