High Order Scheme for Schrödinger Equation with Discontinuous Potential I: Immersed Interface Method

The immersed interface method is modified to compute Schrodinger equa- tion with discontinuous potential. By building the jump conditions of the solution into the finite difference approximation near the interface, this method can give at least sec- ond order convergence rate for the numerical solution on uniform cartesian grids. The accuracy of this algorithm is tested via several numerical examples. AMS subject classifications: 35R05, 65M06, 81Q05

[1]  Zhilin Li,et al.  Convergence analysis of the immersed interface method , 1999 .

[2]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[3]  R. LeVeque,et al.  The immersed interface method for acoustic wave equations with discontinuous coefficients , 1997 .

[4]  Pingwen Zhang,et al.  CONSERVATIVE LOCAL DISCONTINUOUS GALERKIN METHODS FOR TIME DEPENDENT SCHR˜ ODINGER EQUATION , 2005 .

[5]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: High-speed and functional applications of resonant tunnelling diodes , 1995 .

[6]  Mouis,et al.  Simulation schemes in 2D nanoscale MOSFET's: WKB based method , 2004 .

[7]  N. Abdallah,et al.  QUANTUM PHYSICS; PARTICLES AND FIELDS 4241 On a multidimensional Schrodinger-Poisson scattering model for semiconductors , 2000 .

[8]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[9]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[10]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[11]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[12]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[13]  Zhilin Li AN OVERVIEW OF THE IMMERSED INTERFACE METHOD AND ITS APPLICATIONS , 2003 .

[14]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[15]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[16]  Zhilin Li,et al.  The Immersed Interface/Multigrid Methods for Interface Problems , 2002, SIAM J. Sci. Comput..

[17]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[18]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[19]  C. Weisbuch,et al.  Quantum Semiconductor Structures: Fundamentals and Applications , 1991 .

[20]  Hao Wu,et al.  A Generalized Stationary Algorithm for Resonant Tunneling: Multi-Mode Approximation and High Dimension , 2011 .

[21]  Eric Polizzi,et al.  Subband decomposition approach for the simulation of quantum electron transport in nanostructures , 2005 .

[22]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[23]  Zhilin Li,et al.  A note on immersed interface method for three-dimensional elliptic equations , 1996 .

[24]  Chi-Wang Shu,et al.  The WKB Local Discontinuous Galerkin Method for the Simulation of Schrödinger Equation in a Resonant Tunneling Diode , 2009, J. Sci. Comput..

[25]  P. Degond,et al.  On a one-dimensional Schrödinger-Poisson scattering model , 1997 .

[26]  B. Engquist,et al.  Numerical approximations of singular source terms in differential equations , 2004 .

[27]  Zhilin Li A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .

[28]  Olivier Pinaud,et al.  Multiscale simulation of transport in an open quantum system: Resonances and WKB interpolation , 2006, J. Comput. Phys..

[29]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[30]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[31]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[32]  Kazufumi Ito,et al.  Maximum Principle Preserving Schemes for Interface Problems with Discontinuous Coefficients , 2001, SIAM J. Sci. Comput..

[33]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[34]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[35]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[36]  Peter A. Markowich,et al.  A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[37]  Joël Piraux,et al.  A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example , 2001 .

[38]  Tiao Lu,et al.  A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials , 2008 .

[39]  Lixin Wu,et al.  DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .