High Order Scheme for Schrödinger Equation with Discontinuous Potential I: Immersed Interface Method
暂无分享,去创建一个
[1] Zhilin Li,et al. Convergence analysis of the immersed interface method , 1999 .
[2] P. Harrison. Quantum wells, wires, and dots : theoretical and computational physics , 2016 .
[3] R. LeVeque,et al. The immersed interface method for acoustic wave equations with discontinuous coefficients , 1997 .
[4] Pingwen Zhang,et al. CONSERVATIVE LOCAL DISCONTINUOUS GALERKIN METHODS FOR TIME DEPENDENT SCHR˜ ODINGER EQUATION , 2005 .
[5] Hiroshi Mizuta,et al. The Physics and Applications of Resonant Tunnelling Diodes: High-speed and functional applications of resonant tunnelling diodes , 1995 .
[6] Mouis,et al. Simulation schemes in 2D nanoscale MOSFET's: WKB based method , 2004 .
[7] N. Abdallah,et al. QUANTUM PHYSICS; PARTICLES AND FIELDS 4241 On a multidimensional Schrodinger-Poisson scattering model for semiconductors , 2000 .
[8] Zhilin Li. The immersed interface method using a finite element formulation , 1998 .
[9] S. Datta. Quantum Transport: Atom to Transistor , 2004 .
[10] Chi-Wang Shu,et al. Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .
[11] C. Schmeiser,et al. Semiconductor equations , 1990 .
[12] R. LeVeque,et al. A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .
[13] Zhilin Li. AN OVERVIEW OF THE IMMERSED INTERFACE METHOD AND ITS APPLICATIONS , 2003 .
[14] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[15] S. Datta. Electronic transport in mesoscopic systems , 1995 .
[16] Zhilin Li,et al. The Immersed Interface/Multigrid Methods for Interface Problems , 2002, SIAM J. Sci. Comput..
[17] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[18] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[19] C. Weisbuch,et al. Quantum Semiconductor Structures: Fundamentals and Applications , 1991 .
[20] Hao Wu,et al. A Generalized Stationary Algorithm for Resonant Tunneling: Multi-Mode Approximation and High Dimension , 2011 .
[21] Eric Polizzi,et al. Subband decomposition approach for the simulation of quantum electron transport in nanostructures , 2005 .
[22] Randall J. LeVeque,et al. An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..
[23] Zhilin Li,et al. A note on immersed interface method for three-dimensional elliptic equations , 1996 .
[24] Chi-Wang Shu,et al. The WKB Local Discontinuous Galerkin Method for the Simulation of Schrödinger Equation in a Resonant Tunneling Diode , 2009, J. Sci. Comput..
[25] P. Degond,et al. On a one-dimensional Schrödinger-Poisson scattering model , 1997 .
[26] B. Engquist,et al. Numerical approximations of singular source terms in differential equations , 2004 .
[27] Zhilin Li. A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .
[28] Olivier Pinaud,et al. Multiscale simulation of transport in an open quantum system: Resonances and WKB interpolation , 2006, J. Comput. Phys..
[29] Zhilin Li,et al. The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .
[30] Craig S. Lent,et al. The quantum transmitting boundary method , 1990 .
[31] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[32] Kazufumi Ito,et al. Maximum Principle Preserving Schemes for Interface Problems with Discontinuous Coefficients , 2001, SIAM J. Sci. Comput..
[33] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[34] Randall J. LeVeque,et al. Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..
[35] Christof Sparber,et al. Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.
[36] Peter A. Markowich,et al. A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[37] Joël Piraux,et al. A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example , 2001 .
[38] Tiao Lu,et al. A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials , 2008 .
[39] Lixin Wu,et al. DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .