Separating complexity classes related to certain input oblivious logarithmic space-bounded turing machines

Dans cet article, nous prouvons que les machines de Turing non deterministes a lecture insensible a la donnee, a temps d'acces lineaire et en space borne logarithmiquement sont plus puissantes que les machines de Turing deterministes de meme nature. De plus, nous separons les classes de complexite correspondantes les unes des autres

[1]  Matthias Krause,et al.  On Oblivious Branching Programs of Linear Length , 1991, Inf. Comput..

[2]  Christoph Meinel,et al.  p-Projection Reducibility and the Complexity Classes L(nonuniform) and NL(nonuniform) , 1996, MFCS.

[3]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[4]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[5]  Christoph Meinel The Power of Polynomial Size Omega-Branching Programs , 1988, STACS.

[6]  Christoph Meinel,et al.  Separating the Eraser Turing Machine Classes L_e, NL_e, co-NL_e and P_e , 1991, Theor. Comput. Sci..

[7]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[8]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[9]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[10]  Matthias Krause Lower Bounds for Depth-Restricted Branching Programs , 1991, Inf. Comput..

[11]  Neil Immerman,et al.  Nondeterministic space is closed under complementation , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[12]  Noga Alon,et al.  Meanders, Ramsey theory and lower bounds for branching programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).