Regenerative capacity of the myocardium: implications for treatment of heart failure

[1]  Márta Hogye,et al.  [Management of chronic heart failure]. , 2005, Orvosi hetilap.

[2]  M. Soonpaa,et al.  Factors altering DNA synthesis in the cardiac myocyte of the adult newt, Notophthalmus viridescens , 1994, Cell and Tissue Research.

[3]  P. Rumyantsev,et al.  Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[4]  Clotilde Castaldo,et al.  Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Binkley,et al.  Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. , 2003, Circulation.

[6]  Ergin Atalar,et al.  In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction , 2003, Circulation.

[7]  James T. Willerson,et al.  Transendocardial, Autologous Bone Marrow Cell Transplantation for Severe, Chronic Ischemic Heart Failure , 2003, Circulation.

[8]  A. Hagège,et al.  Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. , 2003, Journal of the American College of Cardiology.

[9]  Stefanie Dimmeler,et al.  Transdifferentiation of Blood-Derived Human Adult Endothelial Progenitor Cells Into Functionally Active Cardiomyocytes , 2003, Circulation.

[10]  A. Hagège,et al.  Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy , 2003, The Lancet.

[11]  Hung-Fat Tse,et al.  Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation , 2003, The Lancet.

[12]  Bernd Westphal,et al.  Autologous bone-marrow stem-cell transplantation for myocardial regeneration , 2003, The Lancet.

[13]  E. Nabel,et al.  p21CIP1 Controls Proliferating Cell Nuclear Antigen Level in Adult Cardiomyocytes , 2003, Molecular and Cellular Biology.

[14]  M. Keating,et al.  Heart Regeneration in Zebrafish , 2002, Science.

[15]  G. Hansmann,et al.  Inhibition of Hypoxia-Induced Apoptosis by Modulation of Retinoblastoma Protein–Dependent Signaling in Cardiomyocytes , 2002, Circulation research.

[16]  P. Wernet,et al.  Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans , 2002, Circulation.

[17]  A. Terzic,et al.  Stem cell differentiation requires a paracrine pathway in the heart , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  J. Sanchez-Ramos Neural cells derived from adult bone marrow and umbilical cord blood , 2002, Journal of neuroscience research.

[19]  I. Weissman,et al.  Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells , 2002, Science.

[20]  S. Dudley,et al.  Stem Cell-Derived Cardiomyocytes Demonstrate Arrhythmic Potential , 2002, Circulation.

[21]  C. Robertson,et al.  Failure of bone marrow cells to transdifferentiate into neural cells in vivo. , 2002, Science.

[22]  J. Epstein,et al.  Smooth Muscle Cells, But Not Myocytes, of Host Origin in Transplanted Human Hearts , 2002, Circulation.

[23]  H. Schäfers,et al.  Cardiomyocytes of Noncardiac Origin in Myocardial Biopsies of Human Transplanted Hearts , 2002, Circulation.

[24]  L. Field,et al.  Cardiomyocyte cell cycle regulation. , 2002, Circulation research.

[25]  I. Flink Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei , 2002, Anatomy and Embryology.

[26]  P. Anversa,et al.  bcl-2 overexpression promotes myocyte proliferation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Saffitz,et al.  Evidence for Cardiomyocyte Repopulation by Extracardiac Progenitors in Transplanted Human Hearts , 2002, Circulation research.

[28]  Qi-Long Ying,et al.  Changing potency by spontaneous fusion , 2002, Nature.

[29]  E. Scott,et al.  Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion , 2002, Nature.

[30]  E. Antman,et al.  ACC/AHA PRACTICE GUIDELINES ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary , 2002 .

[31]  P. Anversa,et al.  Chimerism of the transplanted heart. , 2002, The New England journal of medicine.

[32]  Paul D. Kessler,et al.  Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart , 2002, Circulation.

[33]  Peter van Gelderen,et al.  Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells , 2001, Nature Biotechnology.

[34]  B. Goldman,et al.  Evidence that human cardiac myocytes divide after myocardial infarction. , 2001, The New England journal of medicine.

[35]  D. Shum-Tim,et al.  The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. , 2001, The Journal of thoracic and cardiovascular surgery.

[36]  G. Cossu,et al.  Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P. Wernet,et al.  [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. , 2001, Deutsche medizinische Wochenschrift.

[38]  Federica Limana,et al.  Mobilized bone marrow cells repair the infarcted heart, improving function and survival , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Zwas,et al.  Heart regeneration in adult MRL mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  N. Gattermann,et al.  Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt , 2001 .

[41]  L Gepstein,et al.  Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. , 2001, The Journal of clinical investigation.

[42]  H. Blau,et al.  The Evolving Concept of a Stem Cell Entity or Function? , 2001, Cell.

[43]  P. Anversa,et al.  Evidence that human cardiac myocytes divide after myocardial infarction. , 2001, The New England journal of medicine.

[44]  E. Popa,et al.  Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. , 2001, The Journal of clinical investigation.

[45]  M. Entman,et al.  Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. , 2001, The Journal of clinical investigation.

[46]  Neil D. Theise,et al.  Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell , 2001, Cell.

[47]  David M. Bodine,et al.  Bone marrow cells regenerate infarcted myocardium , 2001, Nature.

[48]  S. Homma,et al.  Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function , 2001, Nature Medicine.

[49]  P. Kang,et al.  Cardiac-Specific Overexpression of Cyclin-Dependent Kinase 2 Increases Smaller Mononuclear Cardiomyocytes , 2001, Circulation research.

[50]  E. Braunwald,et al.  Congestive Heart Failure: Fifty Years of Progress , 2000, Circulation.

[51]  M. Konstam Progress in heart failure Management? Lessons from the real world. , 2000, Circulation.

[52]  A. Moorman,et al.  Chamber formation and morphogenesis in the developing mammalian heart. , 2000, Developmental biology.

[53]  N. Sharpe,et al.  Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. , 2000, Circulation.

[54]  M. Bristow β-Adrenergic Receptor Blockade in Chronic Heart Failure , 2000 .

[55]  J. Cleland,et al.  Is the prognosis of heart failure improving? , 1999, Journal of the American College of Cardiology.

[56]  M. Bristow beta-adrenergic receptor blockade in chronic heart failure. , 2000, Circulation.

[57]  K. Chien,et al.  Signaling pathways for cardiac hypertrophy and failure. , 1999, The New England journal of medicine.

[58]  K. Chien,et al.  Stress Pathways and Heart Failure , 1999, Cell.

[59]  W. Abraham,et al.  Hormones and hemodynamics in heart failure. , 1999, The New England journal of medicine.

[60]  H. Leonhardt,et al.  A mammalian myocardial cell-free system to study cell cycle reentry in terminally differentiated cardiomyocytes. , 1999, Circulation research.

[61]  R Dietz,et al.  E2F-1 overexpression in cardiomyocytes induces downregulation of p21CIP1 and p27KIP1 and release of active cyclin-dependent kinases in the presence of insulin-like growth factor I. , 1999, Circulation research.

[62]  G. Brooks,et al.  Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. , 1999, Circulation research.

[63]  M. Codd,et al.  Hospital mortality of acute myocardial infarction in the thrombolytic era , 1999, Heart.

[64]  M. Pittenger,et al.  Multilineage potential of adult human mesenchymal stem cells. , 1999, Science.

[65]  S. Ogawa,et al.  Cardiomyocytes can be generated from marrow stromal cells in vitro. , 1999, The Journal of clinical investigation.

[66]  A. Borisov Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology? , 1999, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[67]  M. C. Cardoso,et al.  E 2 F-1 Overexpression in Cardiomyocytes Induces Downregulation of p 21 CIP 1 and p 27 KIP 1 and Release of Active Cyclin-Dependent Kinases in the Presence of Insulin-Like Growth Factor I , 1999 .

[68]  R. Gilchrist,et al.  Cell cycle profiles and expressions of p21CIP1 AND P27KIP1 during myocyte development. , 1998, International journal of cardiology.

[69]  M. Ikeda,et al.  Essential roles for G1cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. , 1998, American journal of physiology. Heart and circulatory physiology.

[70]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[71]  Jian-Mei Li,et al.  Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. , 1998, American journal of physiology. Heart and circulatory physiology.

[72]  C. di Loreto,et al.  Myocyte proliferation in end-stage cardiac failure in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[73]  PieroAnversa,et al.  Ventricular Myocytes Are Not Terminally Differentiated in the Adult Mammalian Heart , 1998 .

[74]  E. Morkin,et al.  Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes. , 1998, Journal of molecular and cellular cardiology.

[75]  R. Class,et al.  Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. Brooks,et al.  Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. , 1998, The American journal of physiology.

[77]  M. Ikeda,et al.  Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. , 1998, The American journal of physiology.

[78]  L. Truong,et al.  Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. , 1997, The Journal of clinical investigation.

[79]  G. Barsh,et al.  Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  G. Koh,et al.  Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. , 1997, The Journal of clinical investigation.

[81]  I. Wilmut,et al.  Viable offspring derived from fetal and adult mammalian cells , 1997, Nature.

[82]  JunichiSadoshima,et al.  Angiotensin II and Serum Differentially Regulate Expression of Cyclins, Activity of Cyclin-Dependent Kinases, and Phosphorylation of Retinoblastoma Gene Product in Neonatal Cardiac Myocytes , 1997 .

[83]  G. Michalopoulos,et al.  Liver Regeneration , 1997, Science.

[84]  M. Franklin,et al.  Cardiomyocyte DNA synthesis and binucleation during murine development. , 1996, The American journal of physiology.

[85]  M. Abdellatif,et al.  Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. , 1996, Developmental biology.

[86]  B. Li,et al.  Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. B. Armstrong,et al.  Heart development and regeneration in urodeles. , 1996, The International journal of developmental biology.

[88]  R. Kitsis,et al.  Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein , 1996, The Journal of cell biology.

[89]  E. Kardami,et al.  High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. , 1996, Circulation research.

[90]  W. Baumgartner,et al.  Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. , 1993, The American journal of pathology.

[91]  G. Lamas,et al.  Ventricular remodeling after myocardial infarction. , 1993, Advances in experimental medicine and biology.

[92]  E. J. Brown,et al.  Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. , 1992, The New England journal of medicine.

[93]  S. Bishop,et al.  The c-myc proto-oncogene regulates cardiac development in transgenic mice , 1990, Molecular and cellular biology.

[94]  M. Pfeffer,et al.  Ventricular Remodeling After Myocardial Infarction: Experimental Observations and Clinical Implications , 1990, Circulation.

[95]  R. Vracko,et al.  Connective tissue cells in healing rat myocardium. A study of cell reactions in rhythmically contracting environment. , 1989, The American journal of pathology.

[96]  K. Chien,et al.  Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. , 1988, The Journal of biological chemistry.

[97]  R. Roberts,et al.  Differentiation of cardiac myocytes after mitogen withdrawal exhibits three sequential states of the ventricular growth response , 1988, The Journal of cell biology.

[98]  L. Field,et al.  Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. , 1988, Science.

[99]  H. Blau,et al.  Plasticity of the differentiated state. , 1985, Science.

[100]  B. Nadal-Ginard,et al.  Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis , 1978, Cell.

[101]  D. Bader,et al.  Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens) , 1978, Journal of morphology.

[102]  P. Rumyantsev,et al.  Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. , 1977, International review of cytology.

[103]  Linzbach Aj The pathogenesis of cardiac insufficiency in hypertension. , 1975 .

[104]  A. Linzbach The pathogenesis of cardiac insufficiency in hypertension. , 1975, Triangle; the Sandoz journal of medical science.

[105]  R. Zak Development and Proliferative Capacity of Cardiac Muscle Cells , 1974, Circulation research.

[106]  J. Oberpriller,et al.  Response of the adult newt ventricle to injury. , 1974, The Journal of experimental zoology.

[107]  P. Biely,et al.  An Electron Microscopic Autoradiographic Study , 1973 .

[108]  B. Wang,et al.  Changing potency by spontaneous fusion , 2022 .