LAD-CBM; new data processing tool for diagnosis and prognosis in condition-based maintenance

This paper investigates the application of a data mining technique called Logical Analysis of Data (LAD) to condition-based maintenance. The existing classification techniques are mainly based on statistical analysis and modeling approaches. This paper presents a classification technique based on combinatory and Boolean theory. It is shown that LAD is particularly suitable for detecting the state of equipment because of its new way of pre-processing noisy and missing data. A numerical example and an application are presented.

[1]  Toshihide Ibaraki,et al.  Fully Consistent Extensions of Partially Defined Boolean Functions with Missing Bits , 1995, IFIP TCS.

[2]  Paula Diehr,et al.  Imputation of missing longitudinal data: a comparison of methods. , 2003, Journal of clinical epidemiology.

[3]  Tariq Samad,et al.  Imputation of Missing Data in Industrial Databases , 1999, Applied Intelligence.

[4]  J. Shao,et al.  Nearest Neighbor Imputation for Survey Data , 2000 .

[5]  Leo H. Chiang,et al.  Exploring process data with the use of robust outlier detection algorithms , 2003 .

[7]  Elizabeth Vannan,et al.  Quality Data--An Improbable Dream?. , 2001 .

[8]  Toshihide Ibaraki,et al.  An Implementation of Logical Analysis of Data , 2000, IEEE Trans. Knowl. Data Eng..

[9]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[10]  Peter L. Hammer,et al.  Comprehensive vs. comprehensible classifiers in logical analysis of data , 2008, Discret. Appl. Math..

[11]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[12]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[13]  Graham K. Rand,et al.  Quantitative Applications in the Social Sciences , 1983 .

[14]  J. Grzymala-Busse,et al.  Rough Set Approaches to Rule Induction from Incomplete Data , 2004 .

[15]  Peter L. Hammer,et al.  Use of the Logical Analysis of Data Method for Assessing Long-Term Mortality Risk After Exercise Electrocardiography , 2002, Circulation.

[16]  M. Dixon,et al.  - 1-Preparing Clean Views of Data for Data Mining , 2000 .

[17]  Peng Liu,et al.  A Quantitative Study of the Effect of Missing Data in Classifiers , 2005, The Fifth International Conference on Computer and Information Technology (CIT'05).

[18]  Chengqi Zhang,et al.  Missing Value Imputation Based on Data Clustering , 2008, Trans. Comput. Sci..

[19]  Donald K. Wedding,et al.  Discovering Knowledge in Data, an Introduction to Data Mining , 2005, Inf. Process. Manag..

[20]  Shichao Zhang,et al.  Parimputation: From Imputation and Null-Imputation to Partially Imputation , 2008, IEEE Intell. Informatics Bull..

[21]  Toshihide Ibaraki,et al.  Logical Analysis of Data , 2005 .

[22]  Hamdy A. Taha,et al.  Integer Programming: Theory, Applications, and Computations , 1975 .

[23]  Toshihide Ibaraki,et al.  Boolean Analysis of Incomplete Examples , 1996, SWAT.

[24]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[25]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[26]  Jerzy W. Grzymala-Busse,et al.  A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.