Fly motion vision.
暂无分享,去创建一个
A. Borst | J. Haag | D. Reiff | Juergen Haag
[1] Santiago Ramón y Cajal,et al. Contribución al conocimiento de los centros nerviosos de los insectos / por S.R. Cajal y D. Sánchez. , 1915 .
[2] Santiago Ramón y Cajal,et al. Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .
[3] J. Gibson. The perception of the visual world , 1951 .
[4] B. Hassenstein,et al. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .
[5] W. Reichardt,et al. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .
[6] John Tyler Bonner,et al. Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.
[7] O. Trujillo-Cenóz,et al. Compound eye of dipterans: anatomical basis for integration--an electron microscope study. , 1966, Journal of ultrastructure research.
[8] V. Braitenberg,et al. [Order and orientation of elements in the visual system of the fly]. , 1970, Kybernetik.
[9] N. Strausfeld. The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[10] S. Buchner,et al. Preliminary Investigations on a Pair of Giant Fibers in the Central Nervous System of Dipteran Flies , 1973 .
[11] G. Johansson. Visual perception of biological motion and a model for its analysis , 1973 .
[12] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[13] R. Hengstenberg. Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.
[14] G. Geiger,et al. Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.
[15] C. Wehrhahn,et al. Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[16] Hendrik Eckert,et al. The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata , 1983 .
[17] M. Heisenberg,et al. Vision in Drosophila , 1984 .
[18] K. Hausen. The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .
[19] Roger C. Hardie,et al. The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.
[20] S B Laughlin,et al. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[21] N. Strausfeld,et al. The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .
[22] Nicholas J. Strausfeld,et al. The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .
[23] K. Götz. Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .
[24] A. Borst,et al. Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.
[25] R. Hardie,et al. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse , 1989, Nature.
[26] Alexander Borst,et al. Principles of visual motion detection , 1989, Trends in Neurosciences.
[27] W. Pak,et al. Morphological defects in oraJK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila. , 1989, Journal of neurogenetics.
[28] W. Reichardt,et al. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.
[29] R. ffrench-Constant,et al. Isolation of dieldrin resistance from field populations of Drosophila melanogaster (Diptera: Drosophilidae). , 1990, Journal of economic entomology.
[30] A. Borst,et al. Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[31] Alexander Borst,et al. The role of GABA in detecting visual motion , 1990, Brain Research.
[32] N. Strausfeld,et al. Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.
[33] Alexander M. van der Bliek,et al. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic , 1991, Nature.
[34] I. Meinertzhagen,et al. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.
[35] P. Simmons,et al. Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.
[36] M Egelhaaf,et al. In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[37] J. Gould,et al. Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. , 1992, Development.
[38] Alexander Borst,et al. Dendritic integration of motion information in visual interneurons of the blowfly , 1992, Neuroscience Letters.
[39] N. Perrimon,et al. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.
[40] M Egelhaaf,et al. Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. , 1993, Journal of neurophysiology.
[41] N. Strausfeld,et al. Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[42] M Egelhaaf,et al. Calcium accumulation in visual interneurons of the fly: stimulus dependence and relationship to membrane potential. , 1995, Journal of neurophysiology.
[43] W. Gronenberg,et al. Oculomotor control in calliphorid flies: Organization of descending neurons to neck motor neurons responding to visual stimuli , 1995, The Journal of comparative neurology.
[44] G. Laurent,et al. Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.
[45] R. Hengstenberg,et al. Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.
[46] Alexander Borst,et al. Amplification of high-frequency synaptic inputs by active dendritic membrane processes , 1996, Nature.
[47] N. Strausfeld,et al. Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.
[48] A. Borst,et al. Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.
[49] R. Tsien,et al. Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.
[50] Alexander Borst,et al. Synapse distribution on VCH, an inhibitory, motion‐sensitive interneuron in the fly visual system , 1997, The Journal of comparative neurology.
[51] A. Borst,et al. Dendritic Computation of Direction Selectivity and Gain Control in Visual Interneurons , 1997, The Journal of Neuroscience.
[52] A. Borst,et al. Encoding of Visual Motion Information and Reliability in Spiking and Graded Potential Neurons , 1997, The Journal of Neuroscience.
[53] W P Chan,et al. Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.
[54] A. Borst,et al. Active Membrane Properties and Signal Encoding in Graded Potential Neurons , 1998, The Journal of Neuroscience.
[55] A. Borst,et al. Dendritic integration and its role in computing image velocity. , 1998, Science.
[56] R Hengstenberg,et al. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.
[57] Hateren,et al. Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.
[58] Liqun Luo,et al. Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.
[59] William Bialek,et al. Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.
[60] Holger G. Krapp,et al. Wide-field, motion-sensitive neurons and matched filters for optic flow fields , 2000, Biological Cybernetics.
[61] M. Egelhaaf,et al. Synaptic interactions increase optic flow specificity , 2000, The European journal of neuroscience.
[62] Alexander Borst,et al. Cholinergic and GABAergic pathways in fly motion vision , 2001, BMC Neuroscience.
[63] Alexander Borst,et al. Local current spread in electrically compact neurons of the fly , 2000, Neuroscience Letters.
[64] A Borst,et al. Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. , 2000, Journal of neurophysiology.
[65] A. Borst,et al. Mechanisms of dendritic calcium signaling in fly neurons. , 2001, Journal of neurophysiology.
[66] Martin Egelhaaf,et al. Transfer of Visual Motion Information via Graded Synapses Operates Linearly in the Natural Activity Range , 2001, The Journal of Neuroscience.
[67] A Borst,et al. Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.
[68] Roger C. Hardie,et al. Visual transduction in Drosophila , 2001, Nature.
[69] R O Dror,et al. Accuracy of velocity estimation by Reichardt correlators. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[70] A. Borst,et al. Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.
[71] Liqun Luo,et al. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.
[72] Alexander Borst,et al. Different mechanisms of calcium entry within different dendritic compartments. , 2002, Journal of neurophysiology.
[73] R. Hardie,et al. The Target of Drosophila Photoreceptor Synaptic Transmission Is a Histamine-gated Chloride Channel Encoded byort (hclA)* , 2002, The Journal of Biological Chemistry.
[74] A. Borst,et al. Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.
[75] A. Borst,et al. Adaptation of response transients in fly motion vision. I: Experiments , 2003, Vision Research.
[76] M. Dickinson,et al. A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.
[77] A. Borst,et al. Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.
[78] A. Borst,et al. Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly , 2003, The Journal of Neuroscience.
[79] A. Borst,et al. Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.
[80] Alexander Borst,et al. Neural image processing by dendritic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[81] E. Buchner. Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.
[82] T. Poggio,et al. Figure-ground discrimination by relative movement in the visual system of the fly , 1979, Biological cybernetics.
[83] A. Borst,et al. The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: II. Active Membrane Properties , 2004, Journal of Computational Neuroscience.
[84] J. Koenderink,et al. Facts on optic flow , 1987, Biological Cybernetics.
[85] Alexander Borst,et al. Effects of Mean Firing on Neural Information Rate , 2001, Journal of Computational Neuroscience.
[86] Isabelle Bülthoff,et al. Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.
[87] A Borst,et al. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[88] Alexander Borst,et al. Visual information processing in the fly's landing system , 1988, Journal of Comparative Physiology A.
[89] V. Braitenberg,et al. Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.
[90] M. Heisenberg,et al. Flight control during ‘free yaw turns’ inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.
[91] Werner Reichardt,et al. Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.
[92] R. Wolf,et al. Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.
[93] Martin Heisenberg,et al. The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.
[94] Martina Medkovatt,et al. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio , 2004 .
[95] Alexander Borst,et al. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.
[96] K. Fischbach,et al. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.
[97] Roger C. Hardie,et al. Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.
[98] Hendrik Eckert,et al. Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.
[99] A. Borst,et al. What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.
[100] Giulio Fermi,et al. Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.
[101] A. Borst,et al. Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.
[102] H. Straka,et al. Temporal resolving power of blowfly visual system: effects of decamethonium and hyperpolarization on responses of laminar monopolar neurons , 2004, Journal of Comparative Physiology A.
[103] R. Hengstenberg. Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.
[104] V. Braitenberg. Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.
[105] Robert D. DeVoe,et al. Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.
[106] Alexander Borst,et al. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.
[107] Cole Gilbert,et al. Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata , 1991, Journal of Comparative Physiology A.
[108] A. Borst,et al. Spatio-temporal integration of motion , 1988, The Science of Nature.
[109] Karl Geokg Götz,et al. Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.
[110] Alexander Borst,et al. The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: III. Visual Response Properties , 1999, Journal of Computational Neuroscience.
[111] V. Braitenberg,et al. Landing reaction of musca domestica induced by visual stimuli , 1966, Naturwissenschaften.
[112] R. Hengstenberg,et al. The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.
[113] K. Fischbach,et al. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli , 1992, Cell and Tissue Research.
[114] Alexander Borst,et al. Noise, Not Stimulus Entropy, Determines Neural Information Rate , 2004, Journal of Computational Neuroscience.
[115] R. Hengstenberg,et al. The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.
[116] Isabelle Bülthoff,et al. Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.
[117] N. J. Strausfeld,et al. Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.
[118] N. J. Strausfeld,et al. Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.
[119] Karl Georg Götz,et al. Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.
[120] K. Hausen. Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.
[121] K. Kirschfeld,et al. Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.
[122] Matti Järvilehto,et al. Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina , 1971, Zeitschrift für vergleichende Physiologie.
[123] H. Krapp,et al. Population coding of self-motion: applying bayesian analysis to a population of visual interneurons in the fly. , 2005, Journal of neurophysiology.
[124] Alexander Borst,et al. In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.
[125] Lei Shi,et al. Propagation of photon noise and information transfer in visual motion detection , 2006, Journal of Computational Neuroscience.
[126] H. Sompolinsky,et al. Adaptation without parameter change: Dynamic gain control in motion detection , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[127] A. Borst,et al. Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion , 2005, The Journal of Neuroscience.
[128] Alexander Borst,et al. Heterogeneity in synaptic transmission along a Drosophila larval motor axon , 2005, Nature Neuroscience.
[129] Andreas Prokop,et al. Are dendrites in Drosophila homologous to vertebrate dendrites? , 2005, Developmental biology.
[130] Alexander Borst,et al. Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly , 2005, Journal of Comparative Physiology A.
[131] J. V. van Hateren,et al. Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.
[132] Esteban O. Mazzoni,et al. Stochastic spineless expression creates the retinal mosaic for colour vision , 2006, Nature.
[133] A. Borst,et al. Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.
[134] Alexander Borst,et al. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. , 2006, Biophysical journal.
[135] M. Egelhaaf,et al. Robust Integration of Motion Information in the Fly Visual System Revealed by Single Cell Photoablation , 2006, The Journal of Neuroscience.
[136] Idan Segev,et al. Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.
[137] Alexander Borst,et al. Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.
[138] Alexander Borst,et al. Adaptation and information transmission in fly motion detection. , 2007, Journal of neurophysiology.
[139] C. Montell,et al. Phototransduction and retinal degeneration in Drosophila , 2007, Pflügers Archiv - European Journal of Physiology.
[140] Alexander Borst,et al. Reciprocal Inhibitory Connections Within a Neural Network for Rotational Optic-Flow Processing , 2007, Front. Neurosci..
[141] N. Strausfeld,et al. Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.
[142] Alexander Borst,et al. Correlation versus gradient type motion detectors: the pros and cons , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.
[143] A. Straw,et al. Contrast sensitivity of insect motion detectors to natural images. , 2008, Journal of vision.
[144] Fritz-Olaf Lehmann,et al. The free-flight response of Drosophila to motion of the visual environment , 2008, Journal of Experimental Biology.
[145] Alexander Borst,et al. Electrical Coupling of Lobula Plate Tangential Cells to a Heterolateral Motion-Sensitive Neuron in the Fly , 2008, The Journal of Neuroscience.
[146] H. Krapp,et al. Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.
[147] G. Rubin,et al. Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.
[148] A. Borst,et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.
[149] Alexander Borst,et al. Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.
[150] Alexander Borst,et al. Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.
[151] Shin-ya Takemura,et al. Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.
[152] Alexander Borst,et al. The Morphological Identity of Insect Dendrites , 2008, PLoS Comput. Biol..
[153] A. Borst,et al. Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.
[154] A. Borst,et al. Eigenanalysis of a neural network for optic flow processing , 2008 .
[155] Alexander Y Katsov,et al. Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.
[156] Reinhard Wolf,et al. Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.
[157] A. Borst. Drosophila's View on Insect Vision , 2009, Current Biology.
[158] Alexander Borst,et al. Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.
[159] A. Borst,et al. Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.
[160] A. Borst,et al. Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.
[161] Gonzalo G. de Polavieja,et al. Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.
[162] Alexander Borst,et al. Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.
[163] Yan Zhu,et al. Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.
[164] B Schnell,et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.
[165] M. Dickinson,et al. Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.