Fly motion vision.

Fly motion vision and resultant compensatory optomotor responses are a classic example for neural computation. Here we review our current understanding of processing of optic flow as generated by an animal's self-motion. Optic flow processing is accomplished in a series of steps: First, the time-varying photoreceptor signals are fed into a two-dimensional array of Reichardt-type elementary motion detectors (EMDs). EMDs compute, in parallel, local motion vectors at each sampling point in space. Second, the output signals of many EMDs are spatially integrated on the dendrites of large-field tangential cells in the lobula plate. In the third step, tangential cells form extensive interactions with each other, giving rise to their large and complex receptive fields. Thus, tangential cells can act as matched filters tuned to optic flow during particular flight maneuvers. They finally distribute their information onto postsynaptic descending neurons, which either instruct the motor centers of the thoracic ganglion for flight and locomotion control or act themselves as motor neurons that control neck muscles for head movements.

[1]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos / por S.R. Cajal y D. Sánchez. , 1915 .

[2]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[3]  J. Gibson The perception of the visual world , 1951 .

[4]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[5]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[6]  John Tyler Bonner,et al.  Morphogenesis , 1965, Cell.

[7]  O. Trujillo-Cenóz,et al.  Compound eye of dipterans: anatomical basis for integration--an electron microscope study. , 1966, Journal of ultrastructure research.

[8]  V. Braitenberg,et al.  [Order and orientation of elements in the visual system of the fly]. , 1970, Kybernetik.

[9]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  S. Buchner,et al.  Preliminary Investigations on a Pair of Giant Fibers in the Central Nervous System of Dipteran Flies , 1973 .

[11]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[12]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[13]  R. Hengstenberg Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.

[14]  G. Geiger,et al.  Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.

[15]  C. Wehrhahn,et al.  Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Hendrik Eckert,et al.  The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata , 1983 .

[17]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[18]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[19]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[20]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  N. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .

[22]  Nicholas J. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .

[23]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[24]  A. Borst,et al.  Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[25]  R. Hardie,et al.  A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse , 1989, Nature.

[26]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[27]  W. Pak,et al.  Morphological defects in oraJK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila. , 1989, Journal of neurogenetics.

[28]  W. Reichardt,et al.  Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[29]  R. ffrench-Constant,et al.  Isolation of dieldrin resistance from field populations of Drosophila melanogaster (Diptera: Drosophilidae). , 1990, Journal of economic entomology.

[30]  A. Borst,et al.  Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Alexander Borst,et al.  The role of GABA in detecting visual motion , 1990, Brain Research.

[32]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[33]  Alexander M. van der Bliek,et al.  Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic , 1991, Nature.

[34]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[35]  P. Simmons,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.

[36]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Gould,et al.  Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. , 1992, Development.

[38]  Alexander Borst,et al.  Dendritic integration of motion information in visual interneurons of the blowfly , 1992, Neuroscience Letters.

[39]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[40]  M Egelhaaf,et al.  Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. , 1993, Journal of neurophysiology.

[41]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  M Egelhaaf,et al.  Calcium accumulation in visual interneurons of the fly: stimulus dependence and relationship to membrane potential. , 1995, Journal of neurophysiology.

[43]  W. Gronenberg,et al.  Oculomotor control in calliphorid flies: Organization of descending neurons to neck motor neurons responding to visual stimuli , 1995, The Journal of comparative neurology.

[44]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[45]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[46]  Alexander Borst,et al.  Amplification of high-frequency synaptic inputs by active dendritic membrane processes , 1996, Nature.

[47]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[48]  A. Borst,et al.  Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.

[49]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[50]  Alexander Borst,et al.  Synapse distribution on VCH, an inhibitory, motion‐sensitive interneuron in the fly visual system , 1997, The Journal of comparative neurology.

[51]  A. Borst,et al.  Dendritic Computation of Direction Selectivity and Gain Control in Visual Interneurons , 1997, The Journal of Neuroscience.

[52]  A. Borst,et al.  Encoding of Visual Motion Information and Reliability in Spiking and Graded Potential Neurons , 1997, The Journal of Neuroscience.

[53]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[54]  A. Borst,et al.  Active Membrane Properties and Signal Encoding in Graded Potential Neurons , 1998, The Journal of Neuroscience.

[55]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[56]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[57]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[58]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[59]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[60]  Holger G. Krapp,et al.  Wide-field, motion-sensitive neurons and matched filters for optic flow fields , 2000, Biological Cybernetics.

[61]  M. Egelhaaf,et al.  Synaptic interactions increase optic flow specificity , 2000, The European journal of neuroscience.

[62]  Alexander Borst,et al.  Cholinergic and GABAergic pathways in fly motion vision , 2001, BMC Neuroscience.

[63]  Alexander Borst,et al.  Local current spread in electrically compact neurons of the fly , 2000, Neuroscience Letters.

[64]  A Borst,et al.  Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. , 2000, Journal of neurophysiology.

[65]  A. Borst,et al.  Mechanisms of dendritic calcium signaling in fly neurons. , 2001, Journal of neurophysiology.

[66]  Martin Egelhaaf,et al.  Transfer of Visual Motion Information via Graded Synapses Operates Linearly in the Natural Activity Range , 2001, The Journal of Neuroscience.

[67]  A Borst,et al.  Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.

[68]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[69]  R O Dror,et al.  Accuracy of velocity estimation by Reichardt correlators. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[71]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[72]  Alexander Borst,et al.  Different mechanisms of calcium entry within different dendritic compartments. , 2002, Journal of neurophysiology.

[73]  R. Hardie,et al.  The Target of Drosophila Photoreceptor Synaptic Transmission Is a Histamine-gated Chloride Channel Encoded byort (hclA)* , 2002, The Journal of Biological Chemistry.

[74]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[75]  A. Borst,et al.  Adaptation of response transients in fly motion vision. I: Experiments , 2003, Vision Research.

[76]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[77]  A. Borst,et al.  Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.

[78]  A. Borst,et al.  Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly , 2003, The Journal of Neuroscience.

[79]  A. Borst,et al.  Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.

[80]  Alexander Borst,et al.  Neural image processing by dendritic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[82]  T. Poggio,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 1979, Biological cybernetics.

[83]  A. Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: II. Active Membrane Properties , 2004, Journal of Computational Neuroscience.

[84]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[85]  Alexander Borst,et al.  Effects of Mean Firing on Neural Information Rate , 2001, Journal of Computational Neuroscience.

[86]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[87]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Alexander Borst,et al.  Visual information processing in the fly's landing system , 1988, Journal of Comparative Physiology A.

[89]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[90]  M. Heisenberg,et al.  Flight control during ‘free yaw turns’ inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[91]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[92]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[93]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[94]  Martina Medkovatt,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio , 2004 .

[95]  Alexander Borst,et al.  Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.

[96]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[97]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[98]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[99]  A. Borst,et al.  What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.

[100]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[101]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[102]  H. Straka,et al.  Temporal resolving power of blowfly visual system: effects of decamethonium and hyperpolarization on responses of laminar monopolar neurons , 2004, Journal of Comparative Physiology A.

[103]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[104]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[105]  Robert D. DeVoe,et al.  Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.

[106]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[107]  Cole Gilbert,et al.  Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata , 1991, Journal of Comparative Physiology A.

[108]  A. Borst,et al.  Spatio-temporal integration of motion , 1988, The Science of Nature.

[109]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[110]  Alexander Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: III. Visual Response Properties , 1999, Journal of Computational Neuroscience.

[111]  V. Braitenberg,et al.  Landing reaction of musca domestica induced by visual stimuli , 1966, Naturwissenschaften.

[112]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[113]  K. Fischbach,et al.  Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli , 1992, Cell and Tissue Research.

[114]  Alexander Borst,et al.  Noise, Not Stimulus Entropy, Determines Neural Information Rate , 2004, Journal of Computational Neuroscience.

[115]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[116]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.

[117]  N. J. Strausfeld,et al.  Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.

[118]  N. J. Strausfeld,et al.  Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.

[119]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[120]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[121]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[122]  Matti Järvilehto,et al.  Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina , 1971, Zeitschrift für vergleichende Physiologie.

[123]  H. Krapp,et al.  Population coding of self-motion: applying bayesian analysis to a population of visual interneurons in the fly. , 2005, Journal of neurophysiology.

[124]  Alexander Borst,et al.  In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.

[125]  Lei Shi,et al.  Propagation of photon noise and information transfer in visual motion detection , 2006, Journal of Computational Neuroscience.

[126]  H. Sompolinsky,et al.  Adaptation without parameter change: Dynamic gain control in motion detection , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[127]  A. Borst,et al.  Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion , 2005, The Journal of Neuroscience.

[128]  Alexander Borst,et al.  Heterogeneity in synaptic transmission along a Drosophila larval motor axon , 2005, Nature Neuroscience.

[129]  Andreas Prokop,et al.  Are dendrites in Drosophila homologous to vertebrate dendrites? , 2005, Developmental biology.

[130]  Alexander Borst,et al.  Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly , 2005, Journal of Comparative Physiology A.

[131]  J. V. van Hateren,et al.  Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.

[132]  Esteban O. Mazzoni,et al.  Stochastic spineless expression creates the retinal mosaic for colour vision , 2006, Nature.

[133]  A. Borst,et al.  Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.

[134]  Alexander Borst,et al.  A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. , 2006, Biophysical journal.

[135]  M. Egelhaaf,et al.  Robust Integration of Motion Information in the Fly Visual System Revealed by Single Cell Photoablation , 2006, The Journal of Neuroscience.

[136]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[137]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[138]  Alexander Borst,et al.  Adaptation and information transmission in fly motion detection. , 2007, Journal of neurophysiology.

[139]  C. Montell,et al.  Phototransduction and retinal degeneration in Drosophila , 2007, Pflügers Archiv - European Journal of Physiology.

[140]  Alexander Borst,et al.  Reciprocal Inhibitory Connections Within a Neural Network for Rotational Optic-Flow Processing , 2007, Front. Neurosci..

[141]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[142]  Alexander Borst,et al.  Correlation versus gradient type motion detectors: the pros and cons , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[143]  A. Straw,et al.  Contrast sensitivity of insect motion detectors to natural images. , 2008, Journal of vision.

[144]  Fritz-Olaf Lehmann,et al.  The free-flight response of Drosophila to motion of the visual environment , 2008, Journal of Experimental Biology.

[145]  Alexander Borst,et al.  Electrical Coupling of Lobula Plate Tangential Cells to a Heterolateral Motion-Sensitive Neuron in the Fly , 2008, The Journal of Neuroscience.

[146]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[147]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[148]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[149]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[150]  Alexander Borst,et al.  Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.

[151]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[152]  Alexander Borst,et al.  The Morphological Identity of Insect Dendrites , 2008, PLoS Comput. Biol..

[153]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[154]  A. Borst,et al.  Eigenanalysis of a neural network for optic flow processing , 2008 .

[155]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[156]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[157]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[158]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[159]  A. Borst,et al.  Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.

[160]  A. Borst,et al.  Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.

[161]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.

[162]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[163]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[164]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[165]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.