Adversarially Learned Anomaly Detection on CMS open data: re-discovering the top quark

We apply an Adversarially Learned Anomaly Detection (ALAD) algorithm to the problem of detecting new physics processes in proton–proton collisions at the Large Hadron Collider. Anomaly detection based on ALAD matches performances reached by Variational Autoencoders, with a substantial improvement in some cases. Training the ALAD algorithm on 4.4 fb$$^{-1}$$ - 1 of 8 TeV CMS Open Data, we show how a data-driven anomaly detection and characterization would work in real life, re-discovering the top quark by identifying the main features of the $$t \bar{t}$$ t t ¯ experimental signature at the LHC.

[1]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[2]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[3]  J. Caudron,et al.  A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment , 2018, 1807.07447.

[4]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[5]  Tao Liu,et al.  Novelty Detection Meets Collider Physics , 2018, Physical Review D.

[6]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[7]  B. Nachman,et al.  Extending the search for new resonances with machine learning , 2019, Physical Review D.

[8]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[9]  R. D’Agnolo,et al.  Learning new physics from a machine , 2018, Physical Review D.

[10]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[11]  Ruslan Salakhutdinov,et al.  On the Quantitative Analysis of Decoder-Based Generative Models , 2016, ICLR.

[12]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[13]  B. Nachman,et al.  Anomaly Detection for Resonant New Physics with Machine Learning. , 2018, Physical review letters.

[14]  Dustin Anderson,et al.  Data Scouting in CMS , 2016 .

[15]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[16]  Blaise Hanczar,et al.  An Encoding Adversarial Network for Anomaly Detection , 2019, ACML.

[17]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[18]  J. G. Contreras,et al.  A General Search for New Phenomena at HERA , 2007 .

[19]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[20]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[21]  D. Shih,et al.  Searching for new physics with deep autoencoders , 2018, Physical Review D.

[22]  Swagata Mukherjee,et al.  Data Scouting : A New Trigger Paradigm , 2017, 1708.06925.

[23]  Maria Spiropulu,et al.  Variational autoencoders for new physics mining at the Large Hadron Collider , 2018, Journal of High Energy Physics.

[24]  C. Collaboration,et al.  Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.

[25]  C. Weisser,et al.  Machine learning and multivariate goodness of fit , 2016, 1612.07186.

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[28]  A. Simone,et al.  Guiding new physics searches with unsupervised learning , 2018, The European Physical Journal C.

[29]  M. Spannowsky,et al.  Adversarially-trained autoencoders for robust unsupervised new physics searches , 2019, Journal of High Energy Physics.

[30]  E. al.,et al.  Global search for new physics with 2.0 fb(-1) at CDF , 2008, 0809.3781.

[31]  B. Nachman,et al.  Anomaly detection with density estimation , 2020, Physical Review D.

[32]  Chuan Sheng Foo,et al.  Adversarially Learned Anomaly Detection , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[33]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[34]  Procedure for the LHC Higgs boson search combination in Summer 2011 , 2011 .

[35]  M. Pierini,et al.  Learning multivariate new physics , 2019, The European Physical Journal C.

[36]  Javier Duarte Fast Reconstruction and Data Scouting , 2018 .

[37]  Salvatore J. Stolfo,et al.  Cost-based modeling for fraud and intrusion detection: results from the JAM project , 2000, Proceedings DARPA Information Survivability Conference and Exposition. DISCEX'00.

[38]  Jason I. Brown,et al.  Model independent search for new phenomena in pp̄ collisions at √s=1.96TeV , 2012 .

[39]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[40]  Anil A. Bharath,et al.  Inverting the Generator of a Generative Adversarial Network , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Gregor Kasieczka,et al.  QCD or what? , 2018, SciPost Physics.

[42]  David Shih,et al.  Simulation assisted likelihood-free anomaly detection , 2020 .