On exact algorithms for treewidth
暂无分享,去创建一个
Dimitrios M. Thilikos | Fedor V. Fomin | Dieter Kratsch | Arie M. C. A. Koster | Hans L. Bodlaender | F. Fomin | D. Thilikos | H. Bodlaender | D. Kratsch | A. Koster
[1] Sandeep Koranne,et al. Boost C++ Libraries , 2011 .
[2] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[3] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[4] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[5] Arie M. C. A. Koster,et al. Degree-Based Treewidth Lower Bounds , 2005, WEA.
[6] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[7] Yngve Villanger,et al. Computing Pathwidth Faster Than 2n , 2009, IWPEC.
[8] Jacques Carlier,et al. Heuristic and metaheuristic methods for computing graph treewidth , 2004, RAIRO Oper. Res..
[9] Yngve Villanger,et al. Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In , 2006, LATIN.
[10] Mikko Koivisto,et al. A space-time tradeoff for permutation problems , 2010, SODA '10.
[11] Fedor V. Fomin,et al. Exact algorithms for treewidth and minimum fill-in ∗ † , 2006 .
[12] Arie M. C. A. Koster,et al. Contraction and Treewidth Lower Bounds , 2004, J. Graph Algorithms Appl..
[13] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[14] Ioan Todinca,et al. Listing all potential maximal cliques of a graph , 2000, Theor. Comput. Sci..
[15] Hisao Tamaki,et al. Computing Directed Pathwidth in O(1.89 n ) Time , 2012, IPEC.
[16] Arie M. C. A. Koster,et al. Treewidth computations I. Upper bounds , 2010, Inf. Comput..
[17] Hans L. Bodlaender,et al. A Branch and Bound Algorithm for Exact, Upper, and Lower Bounds on Treewidth , 2006, AAIM.
[18] Gerhard J. Woeginger,et al. Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.
[19] Saharon Shelah,et al. Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..
[20] Arie M. C. A. Koster,et al. Treewidth computations II. Lower bounds , 2011, Inf. Comput..
[21] Arie M. C. A. Koster,et al. PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..
[22] Dimitrios M. Thilikos,et al. Fugitive-Search Games on Graphs and Related Parameters , 1994, Theor. Comput. Sci..
[23] Dimitrios M. Thilikos,et al. A Note on Exact Algorithms for Vertex Ordering Problems on Graphs , 2012, Theory of Computing Systems.
[24] JOSEP DÍAZ,et al. A survey of graph layout problems , 2002, CSUR.
[25] Hans L. Bodlaender,et al. Discovering Treewidth , 2005, SOFSEM.
[26] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[27] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[28] M. Golumbic. Chapter 3 - Perfect graphs , 2004 .
[29] Jacques Carlier,et al. New Lower and Upper Bounds for Graph Treewidth , 2003, WEA.
[30] Fedor V. Fomin,et al. Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.
[31] Vibhav Gogate,et al. A Complete Anytime Algorithm for Treewidth , 2004, UAI.
[32] M. Held,et al. A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.
[33] Fabrizio Grandoni,et al. Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.
[34] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[35] Fedor V. Fomin,et al. Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.
[36] Dan Geiger,et al. A Practical Algorithm for Finding Optimal Triangulations , 1997, AAAI/IAAI.
[37] Andreas Björklund,et al. Determinant Sums for Undirected Hamiltonicity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[38] Hans L. Bodlaender,et al. New Upper Bound Heuristics for Treewidth , 2005, WEA.
[39] Ioan Todinca,et al. Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..
[40] Hans L. Bodlaender,et al. Treewidth: Characterizations, Applications, and Computations , 2006, WG.
[41] Michal Pilipczuk,et al. On Cutwidth Parameterized by Vertex Cover , 2011, IPEC.
[42] Fedor V. Fomin,et al. Treewidth computation and extremal combinatorics , 2008, Comb..