Enumerating Parking Completions Using Join and Split

Given a strictly increasing sequence $\mathbf{t}$ with entries from $[n]:=\{1,\ldots,n\}$, a parking completion is a sequence $\mathbf{c}$ with $|\mathbf{t}|+|\mathbf{c}|=n$ and $|\{t\in \mathbf{t}\mid t\leqslant i\}|+|\{c\in \mathbf{c}\mid c\leqslant i\}|\geqslant i$ for all $i$ in $[n]$.  We can think of $\mathbf{t}$ as a list of spots already taken in a street with $n$ parking spots and $\mathbf{c}$ as a list of parking preferences where the $i$-th car attempts to park in the $c_i$-th spot and if not available then proceeds up the street to find the next available spot, if any.  A parking completion corresponds to a set of preferences $\mathbf{c}$ where all cars park. We relate parking completions to enumerating restricted lattice paths and give formulas for both the ordered and unordered variations of the problem by use of a pair of operations termed Join and Split.  Our results give a new volume formula for most Pitman-Stanley polytopes, and enumerate the \emph{signature parking functions} of Ceballos and González D'León.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  Criel Merino López Chip firing and the tutte polynomial , 1997 .

[3]  Catherine H. Yan,et al.  Generalized Parking Functions, Tree Inversions, and Multicolored Graphs , 2001, Adv. Appl. Math..

[4]  Richard P. Stanley,et al.  A Polytope Related to Empirical Distributions, Plane Trees, Parking Functions, and the Associahedron , 2002, Discret. Comput. Geom..

[5]  Joseph P. S. Kung,et al.  Goncarov polynomials and parking functions , 2003, J. Comb. Theory, Ser. A.

[6]  Ira M. Gessel,et al.  A Refinement of Cayley's Formula for Trees , 2006, Electron. J. Comb..

[7]  Nathan Williams,et al.  Rational Associahedra and Noncrossing Partitions , 2013, Electron. J. Comb..

[8]  Gregory S. Warrington,et al.  Rational Parking Functions and Catalan Numbers , 2014, 1403.1845.

[9]  Mikhail Mazin,et al.  Affine permutations and rational slope parking functions , 2014, 1403.0303.

[10]  Sam Hopkins,et al.  Parking functions and tree inversions revisited , 2016, Adv. Appl. Math..

[11]  Richard Ehrenborg,et al.  Parking Cars of Different Sizes , 2016 .

[12]  David Perkinson,et al.  G-parking functions and tree inversions , 2013, Comb..

[13]  Evgeny Gorsky,et al.  Rational Dyck Paths in the Non Relatively Prime Case , 2017, Electron. J. Comb..

[14]  Richard Ehrenborg,et al.  Parking cars after a trailer , 2017 .

[15]  Persi Diaconis,et al.  Probabilizing parking functions , 2016, Adv. Appl. Math..

[16]  Cesar Ceballos,et al.  Signature Catalan combinatorics , 2019, Journal of Combinatorics.