Bayesian inference with rescaled Gaussian process priors
暂无分享,去创建一个
[1] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[2] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[3] G. Wahba. Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .
[4] Tom Leonard. Density Estimation, Stochastic Processes and Prior Information , 1978 .
[5] K. Parthasarathy. Introduction to Probability and Measure , 1979 .
[6] P. Lenk. The Logistic Normal Distribution for Bayesian, Nonparametric, Predictive Densities , 1988 .
[7] Peter J. Lenk,et al. Towards a practicable Bayesian nonparametric density estimator , 1991 .
[8] J. Kuelbs,et al. Metric entropy and the small ball problem for Gaussian measures , 1993 .
[9] L. Werner. Existence of small ball constants for fractional Brownian motions , 1998 .
[10] Sally Wood,et al. A Bayesian Approach to Robust Binary Nonparametric Regression , 1998 .
[11] Werner Linde,et al. Approximation, metric entropy and small ball estimates for Gaussian measures , 1999 .
[12] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[13] L. Wasserman,et al. Rates of convergence of posterior distributions , 2001 .
[14] Tong Zhang. From ɛ-entropy to KL-entropy: Analysis of minimum information complexity density estimation , 2006, math/0702653.
[15] S. Ghosal,et al. Posterior consistency of Gaussian process prior for nonparametric binary regression , 2006, math/0702686.
[16] Van Der Vaart,et al. Convergence rates of posterior distributions for Brownian semimartingale models , 2006 .
[17] S. Ghosal,et al. Nonparametric binary regression using a Gaussian process prior , 2007 .
[18] A. V. D. Vaart,et al. Convergence rates of posterior distributions for non-i.i.d. observations , 2007, 0708.0491.
[19] J. Ghosh,et al. Posterior consistency of logistic Gaussian process priors in density estimation , 2007 .
[20] S. Walker,et al. On rates of convergence for posterior distributions in infinite-dimensional models , 2007, 0708.1892.
[21] A. W. Vaart,et al. Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.
[22] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[23] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.