Toward Macro-Modeling of Alkali-Silica Reaction-Affected Structures

[1]  A. Shayan,et al.  An experimental clarification of the association of delayed ettringite formation with alkali-aggregate reaction , 1996 .

[2]  Graciela Marta Giaccio,et al.  Mechanical behavior of concretes damaged by alkali-silica reaction , 2008 .

[3]  F. Vecchio Nonlinear Finite Element Analysis of Reinforced Concrete Membranes , 1989 .

[4]  Frank J. Vecchio,et al.  Finite Element Modeling of Concrete Expansion and Confinement , 1992 .

[5]  Oguzhan Bayrak,et al.  ASR/DEF-Damaged Bent Caps: Shear Tests and Field Implications , 2009 .

[6]  F. Vecchio DISTURBED STRESS FIELD MODEL FOR REINFORCED CONCRETE: FORMULATION , 2000 .

[7]  Olivier Coussy,et al.  Thermo-chemo-mechanics of ASR expansion in concrete structures , 2000 .

[8]  H. Houari,et al.  Swellings due to alkali-silica reaction and delayed ettringite formation: Characterisation of expansion isotropy and effect of moisture conditions , 2012 .

[9]  Benoit Fournier,et al.  Use of Damage Rating Index to Quantify Alkali-Silica Reaction Damage in Concrete: Fine versus Coarse Aggregate , 2016 .

[10]  Karen Scrivener,et al.  Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .

[11]  José L. D. Alves,et al.  MACROSCOPIC MODEL OF CONCRETE SUBJECTED TO ALKALI-AGGREGATE REACTION , 2004 .

[12]  Thomas E. Stanton,et al.  California Experience With the Expansion of Concrete Through Reaction Between Cement and Aggregate , 1942 .

[13]  Etienne Grimal,et al.  Combination of Structural Monitoring and Laboratory Tests for Assessment of Alkali-Aggregate Reaction Swelling: Application to Gate Structure Dam , 2009 .

[14]  B. P. Gautam Multiaxially Loaded Concrete Undergoing Alkali-Silica Reaction (ASR) , 2016 .

[15]  Patrice Rivard,et al.  Assessing alkali-silica reaction damage to concrete with non-destructive methods: From the lab to the field , 2009 .

[16]  Victor E. Saouma,et al.  Constitutive Model for Alkali-Aggregate Reactions , 2006 .

[17]  Frank J. Vecchio,et al.  Nonlinear Finite Element Modeling of Reinforced Concrete Structures under Impact Loads , 2009 .

[18]  Gérard Ballivy,et al.  Assessment of the expansion related to alkali-silica reaction by the Damage Rating Index method , 2005 .

[19]  F. Vecchio,et al.  THE MODIFIED COMPRESSION FIELD THEORY FOR REINFORCED CONCRETE ELEMENTS SUBJECTED TO SHEAR , 1986 .

[20]  E. Thorenfeldt Mechanical properties of high-strength concrete and applications in design , 1987 .

[21]  Sujeeva Setunge,et al.  STRESS - STRAIN RELATIONSHIP OF CONFINED AND UNCONFINED CONCRETE , 1996 .

[22]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part I: A Constitutive Model , 2008 .

[23]  Frank J. Vecchio,et al.  Reinforced Concrete Membrane Element Formulations , 1990 .

[24]  Victor E. Saouma,et al.  Chemo-Mechanical Micromodel for Alkali-Silica Reaction , 2013 .

[25]  J. Hanson,et al.  EFFECT OF ALKALI SILICA REACTION EXPANSION AND CRACKING ON STRUCTURAL BEHAVIOR OF REINFORCED CONCRETE BEAMS , 1998 .

[26]  Erik Schlangen,et al.  Modelling of Effect of ASR on Concrete Microstructure , 2007 .

[27]  Stéphane Multon,et al.  Structural behavior of concrete beams affected by alkali-silica reaction , 2005 .

[28]  Alexander Steffens,et al.  Mathematical model for kinetics of alkali-silica reaction in concrete , 2000 .

[29]  E. Fairbairn,et al.  Modelling the structural behaviour of a dam affected by alkali–silica reaction , 2005 .