Facilitation of chromatin dynamics by SARs.

[1]  W. Gehring,et al.  In vivo analysis of scaffold‐associated regions in Drosophila: a synthetic high‐affinity SAR binding protein suppresses position effect variegation , 1998, The EMBO journal.

[2]  A. Murray,et al.  Interphase chromosomes undergo constrained diffusional motion in living cells , 1997, Current Biology.

[3]  W. Bickmore,et al.  Scaffold attachments within the human genome. , 1997, Journal of cell science.

[4]  T. Kohwi-Shigematsu,et al.  A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. , 1997, Biochemistry.

[5]  Matthias Mann,et al.  Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II , 1997, Nature.

[6]  R. Kobayashi,et al.  Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein , 1997, Cell.

[7]  T. Jenuwein,et al.  Extension of chromatin accessibility by nuclear matrix attachment regions , 1997, Nature.

[8]  H. Bellen,et al.  Chromatid Segregation at Anaphase Requires the barren Product, a Novel Chromosome-Associated Protein That Interacts with Topoisomerase II , 1996, Cell.

[9]  Howard Cedar,et al.  A role for nuclear NF–κB in B–cell–specific demethylation of the Igκ locus , 1996, Nature Genetics.

[10]  U. K. Laemmli,et al.  SARs are cis DNA elements of chromosome dynamics: Synthesis of a SAR repressor protein , 1995, Cell.

[11]  R. Scheuermann,et al.  The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. , 1995, Genes & development.

[12]  R. Scheuermann,et al.  Mutually exclusive interaction of a novel matrix attachment region binding protein and the NF-muNR enhancer repressor. Implications for regulation of immunoglobulin heavy chain expression. , 1995, The Journal of biological chemistry.

[13]  T. Kohwi-Shigematsu,et al.  Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential , 1995, Molecular and cellular biology.

[14]  T. Mitchison,et al.  A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro , 1994, Cell.

[15]  U. K. Laemmli,et al.  SARs stimulate but do not confer position independent gene expression. , 1994, Nucleic acids research.

[16]  T. Jenuwein,et al.  Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. , 1994, Science.

[17]  H. Cedar,et al.  B cell-specific demethylation: A novel role for the intronic κ chain enhancer sequence , 1994, Cell.

[18]  U. K. Laemmli,et al.  Metaphase chromosome structure: Bands arise from a differential folding path of the highly AT-rich scaffold , 1994, Cell.

[19]  A. Hilliker,et al.  Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. , 1993, Genetics.

[20]  K. Zhao,et al.  SAR‐dependent mobilization of histone H1 by HMG‐I/Y in vitro: HMG‐I/Y is enriched in H1‐depleted chromatin. , 1993, The EMBO journal.

[21]  B. Turner,et al.  The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression , 1993, Cell.

[22]  W F Thompson,et al.  Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. , 1993, The Plant cell.

[23]  W. Bickmore,et al.  Genes and genomes: chromosome bands – flavours to savour , 1993 .

[24]  V. Pirrotta,et al.  The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position‐effects. , 1993, The EMBO journal.

[25]  U. K. Laemmli,et al.  A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin. , 1993, The EMBO journal.

[26]  W. Bickmore,et al.  Chromosome bands--flavours to savour. , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  Y. Kohwi,et al.  A tissue-specific MAR SAR DNA-binding protein with unusual binding site recognition , 1992, Cell.

[28]  R. Kellum,et al.  A group of scs elements function as domain boundaries in an enhancer-blocking assay , 1992, Molecular and cellular biology.

[29]  U. K. Laemmli,et al.  In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. , 1992, The EMBO journal.

[30]  J. Bode,et al.  Biological significance of unwinding capability of nuclear matrix-associating DNAs. , 1992, Science.

[31]  U. K. Laemmli,et al.  Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. , 1992, Current opinion in genetics & development.

[32]  Paul Schedl,et al.  A position-effect assay for boundaries of higher order chromosomal domains , 1991, Cell.

[33]  J. Bode,et al.  Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters. , 1991, Biochemistry.

[34]  U. K. Laemmli,et al.  Chromosome assembly in vitro: Topoisomerase II is required for condensation , 1991, Cell.

[35]  M. Nissen,et al.  The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. , 1990, The Journal of biological chemistry.

[36]  U. K. Laemmli,et al.  Preferential, cooperative binding of DNA topoisomerase II to scaffold‐associated regions. , 1989, The EMBO journal.

[37]  R. Scheuermann,et al.  A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy-chain enhancer. , 1989, Genes & development.

[38]  D. Higgs,et al.  Nuclear scaffold attachment sites in the human globin gene complexes. , 1988, The EMBO journal.

[39]  U. K. Laemmli,et al.  Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster , 1986, Cell.

[40]  U. K. Laemmli,et al.  Metaphase chromosome structure. Involvement of topoisomerase II. , 1986, Journal of molecular biology.

[41]  P. Cockerill,et al.  Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites , 1986, Cell.

[42]  W. Earnshaw,et al.  Localization of topoisomerase II in mitotic chromosomes , 1985, The Journal of cell biology.

[43]  U. K. Laemmli,et al.  Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold , 1984, Cell.

[44]  B. Kerem,et al.  Mapping of DNAase I sensitive regions on mitotic chromosomes , 1984, Cell.

[45]  J. R. Paulson,et al.  Metaphase chromosome structure: the role of nonhistone proteins. , 1978, Cold Spring Harbor symposia on quantitative biology.