A technique for the numerical solution of initial-value problems based on a class of Birkhoff-type interpolation method

In this paper a class of Birkhoff-type interpolation problems on arbitrary nodal points is studied. The explicit representation (characterization), the uniqueness and the error function are explicitly given. Furthermore, we apply the obtained Birkhoff-type interpolation method to find: (i) the numerical solution of high order initial-value problems (IVPs) and the corresponding error of this approximation, (ii) the approximation of some special functions with their explicit error functions, and (iii) new interpolatory type quadrature formulae of precision degree at least m+n-1 and m+kn-1(m,n,[email protected]?N,n,k>=2). Numerical examples are included to demonstrate the validity and applicability of the technique proposed in this paper and a comparison is made with the existing results. The results reveal that the new method is effective, simple and accurate.

[1]  P. Davis Interpolation and approximation , 1965 .

[2]  Jianlin Xia,et al.  Two low accuracy methods for stiff systems , 2001, Appl. Math. Comput..

[3]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[4]  Mohd. Salmi Md. Noorani,et al.  Homotopy analysis method for singular IVPs of Emden–Fowler type , 2009 .

[5]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[6]  Francesco Aldo Costabile,et al.  A method for polynomial approximation of the solution of general second order BVPs , 2006 .

[7]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[8]  Armando Majorana,et al.  Boundary value problems for higher order ordinary differential equations , 1994 .

[9]  A. I. Garralda Guillem,et al.  High-order nonlinear initial-value problems countably determined , 2009 .

[10]  D. K. Dimitrov On a problem of Turán: (0, 2) quadrature formula with a high algebraic degree of precision , 1991 .

[11]  Francesco Aldo Costabile,et al.  A NEW COLLOCATION METHOD FOR A BVP , 2009 .

[12]  H. Davis Introduction to Nonlinear Differential and Integral Equations , 1964 .

[13]  Siamak Mehrkanoon,et al.  A direct variable step block multistep method for solving general third-order ODEs , 2011, Numerical Algorithms.

[14]  Higinio Ramos,et al.  A non-standard explicit integration scheme for initial-value problems , 2007, Appl. Math. Comput..

[15]  Liu,et al.  PARALLEL ROSENBROCK METHODS FOR SOLVING STIFF SYSTEMS IN REAL-TIME SIMULATION , 2000 .

[16]  Afgan Aslanov,et al.  A generalization of the Lane–Emden equation , 2008, Int. J. Comput. Math..

[17]  A. K. Varma On Birkhoff quadrature formulas. II , 1993 .

[18]  J. M. Whittaker Interpolatory function theory , 1935 .

[19]  L. M. Berkovich The Generalized Emden-Fowler Equation , 1997 .

[20]  E. H. Twizell,et al.  The numerical solution of third-order boundary-value problems with fourth-degree & B-spline functions , 1999, Int. J. Comput. Math..

[21]  S. Karimi Vanani,et al.  On the numerical solution of differential equations of Lane-Emden type , 2010, Comput. Math. Appl..

[22]  Mohammad Masjed-Jamei On constructing new expansions of functions using linear operators , 2010, J. Comput. Appl. Math..

[23]  Li Shouju,et al.  A class of parallel algorithms of real-time numerical simulation for stiff dynamic system , 2012 .

[24]  Francesco Aldo Costabile,et al.  A Birkhoff interpolation problem and application , 2010 .

[25]  Mehdi Dehghan,et al.  A semi‐numerical technique for solving the multi‐point boundary value problems and engineering applications , 2011 .

[26]  M. Dehghan,et al.  Application of He’s homotopy perturbation method for non-linear system of second-order boundary value problems , 2009 .

[27]  P. Turán,et al.  On some open problems of approximation theory , 1980 .

[28]  Francesco A. Costabile,et al.  A class of collocation methods for numerical integration of initial value problems , 2011, Comput. Math. Appl..

[29]  Gradimir V. Milovanovic,et al.  A generalized Birkhoff-Young-Chebyshev quadrature formula for analytic functions , 2011, Appl. Math. Comput..

[30]  Ravi P. Agarwal,et al.  Boundary value problems for higher order differential equations , 1986 .

[31]  Ali Hassan Mohd Murid,et al.  Explicit methods in solving stiff ordinary differential equations , 2004, Int. J. Comput. Math..

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[33]  M. Dehghan,et al.  The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique , 2009 .

[34]  Afgan Aslanov,et al.  Determination of convergence intervals of the series solutions of Emden-Fowler equations using polytropes and isothermal spheres , 2008 .

[35]  Md. Sazzad Hossien Chowdhury,et al.  Solutions of Emden-Fowler equations by homotopy-perturbation method , 2009 .

[36]  Mohammad Masjed-Jamei On constructing new interpolation formulas using linear operators and an operator type of quadrature rules , 2008 .

[37]  W. Greub Linear Algebra , 1981 .

[38]  Mehdi Dehghan,et al.  Solution of delay differential equations via a homotopy perturbation method , 2008, Math. Comput. Model..

[39]  Mehdi Dehghan,et al.  On the convergence of He's variational iteration method , 2007 .

[40]  Abdul-Majid Wazwaz,et al.  A new algorithm for solving differential equations of Lane-Emden type , 2001, Appl. Math. Comput..

[41]  Mehdi Dehghan,et al.  An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method , 2010, Comput. Phys. Commun..

[42]  Ali H. Bhrawy,et al.  New Algorithm for the Numerical Solutions of Nonlinear Third-Order Differential Equations Using Jacobi-Gauss Collocation Method , 2011 .

[43]  M. Lénaárd Birkhoff quadrature formulae based on the zeros of Jacobi polynomials , 2003 .

[44]  Xiangfan Piao,et al.  A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability , 2011 .

[45]  Aiguo Xiao,et al.  Parallel two-step ROW-methods for stiff delay differential equations , 2009 .