Tutorial on evolutionary multiobjective optimization

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada ACM 978-1-4503-2881-4/14/07. http://dx.doi.org/10.1145/2598394.2605339 Dimo Brockhoff dimo.brockhoff@inria.fr

[1]  Carlos M. Fonseca,et al.  On the Computation of the Empirical Attainment Function , 2011, EMO.

[2]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[3]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[4]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[5]  Souhila Kaci,et al.  Using Comparative Preference Statements in Hypervolume-Based Interactive Multiobjective Optimization , 2014, LION.

[6]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[7]  Frank Neumann,et al.  On the Effects of Adding Objectives to Plateau Functions , 2009, IEEE Transactions on Evolutionary Computation.

[8]  Joshua D. Knowles,et al.  Multiobjectivization by Decomposition of Scalar Cost Functions , 2008, PPSN.

[9]  Kalyanmoy Deb,et al.  Temporal Innovization: Evolution of Design Principles Using Multi-objective Optimization , 2015, EMO.

[10]  Sébastien Vérel,et al.  Set-based multiobjective fitness landscapes: a preliminary study , 2011, GECCO '11.

[11]  Subhash Suri,et al.  On Klee's measure problem for grounded boxes , 2012, SoCG '12.

[12]  Johannes Bader,et al.  Hypervolume-based search for multiobjective optimization: Theory and methods , 2010 .

[13]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[14]  Anne Auger,et al.  Quantitative Performance Assessment of Multiobjective Optimizers: The Average Runtime Attainment Function , 2017, EMO.

[15]  Heike Trautmann,et al.  R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection , 2013, LION.

[16]  Tobias Wagner,et al.  On the Use of Problem-Specific Candidate Generators for the Hybrid Optimization of Multi-Objective Production Engineering Problems , 2009, Evolutionary Computation.

[17]  Carlos M. Fonseca,et al.  Greedy Hypervolume Subset Selection in the Three-Objective Case , 2015, GECCO.

[18]  Joshua D. Knowles,et al.  Investigations into the Effect of Multiobjectivization in Protein Structure Prediction , 2008, PPSN.

[19]  Kalyanmoy Deb,et al.  An integrated approach to automated innovization for discovering useful design principles: Case studies from engineering , 2014, Appl. Soft Comput..

[20]  Eckart Zitzler,et al.  Pattern identification in pareto-set approximations , 2008, GECCO '08.

[21]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[22]  Karl Bringmann,et al.  Bringing Order to Special Cases of Klee's Measure Problem , 2013, MFCS.

[23]  Kazutoshi Sakakibara,et al.  A Multiobjectivization Approach for Vehicle Routing Problems , 2007, EMO.

[24]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[25]  Karl Bringmann,et al.  Two-dimensional subset selection for hypervolume and epsilon-indicator , 2014, GECCO.

[26]  Daisuke Sasaki,et al.  Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map , 2003, EMO.

[27]  Nicola Beume,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Gradient-based / Evolutionary Relay Hybrid for Computing Pareto Front Approximations Maximizing the S-Metric , 2007 .

[28]  Tobias Friedrich,et al.  The logarithmic hypervolume indicator , 2011, FOGA '11.

[29]  Manuel López-Ibáñez,et al.  Machine Decision Makers as a Laboratory for Interactive EMO , 2015, EMO.

[30]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[31]  E. Zitzler,et al.  Directed Multiobjective Optimization Based on the Weighted Hypervolume Indicator , 2013 .

[32]  Lothar Thiele,et al.  Chapter 4 – Design Space Exploration of Network Processor Architectures , 2003 .

[33]  Mikkel T. Jensen,et al.  Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation , 2004, J. Math. Model. Algorithms.

[34]  Carlos M. Fonseca,et al.  Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms , 2016, Evolutionary Computation.

[35]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[36]  Thomas Stützle,et al.  Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[37]  Tobias Friedrich,et al.  Approximating the least hypervolume contributor: NP-hard in general, but fast in practice , 2008, Theor. Comput. Sci..

[38]  Eckart Zitzler,et al.  Module Identification from Heterogeneous Biological Data Using Multiobjective Evolutionary Algorithms , 2006, PPSN.

[39]  Marouane Kessentini,et al.  Preference Incorporation in Evolutionary Multiobjective Optimization , 2015 .

[40]  荒川 治,et al.  22. 「メタアクリツクレジン相互の接着(第二報)」(第 3 回九州齒科学会総会) , 1953 .

[41]  Karl Bringmann,et al.  An improved algorithm for Kleeʼs measure problem on fat boxes , 2012, Comput. Geom..

[42]  David Greiner,et al.  Improving Computational Mechanics Optimum Design Using Helper Objectives: An Application in Frame Bar Structures , 2007, EMO.

[43]  Eckart Zitzler,et al.  On Using Populations of Sets in Multiobjective Optimization , 2009, EMO.

[44]  Heike Trautmann,et al.  On the properties of the R2 indicator , 2012, GECCO '12.

[45]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[46]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[47]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[48]  Thomas Stützle,et al.  To DE or Not to DE? Multi-objective Differential Evolution Revisited from a Component-Wise Perspective , 2015, EMO.

[49]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[50]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[51]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[52]  Gara Miranda,et al.  Using multi-objective evolutionary algorithms for single-objective optimization , 2013, 4OR.

[53]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[54]  Oswin Krause,et al.  Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite , 2016, GECCO.

[55]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[56]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[57]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[58]  Christian Igel,et al.  Improved step size adaptation for the MO-CMA-ES , 2010, GECCO '10.

[59]  Carlos M. Fonseca,et al.  Computing and Updating Hypervolume Contributions in Up to Four Dimensions , 2018, IEEE Transactions on Evolutionary Computation.

[60]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[61]  Anne Auger,et al.  On Bi-Objective convex-quadratic problems , 2019, EMO.

[62]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[63]  B. Naujoks,et al.  Non‐monotonicity of Observed Hypervolume in 1‐Greedy S‐Metric Selection , 2013 .

[64]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.