Ansatz for Dynamical Hierarchies

Complex, robust functionalities can be generated naturally in at least two ways: by the assembly of structures and by the evolution of structures. This work is concerned with spontaneous formation of structures. We define the notion of dynamical hierarchies in natural systems and show the importance of this particular kind of organization for living systems. We then define a framework that enables us to formulate, investigate, and manipulate such dynamical hierarchies. This framework allows us to simultaneously investigate different levels of description together with their interrelationship, which is necessary to understand the nature of dynamical hierarchies. Our framework is then applied to a concrete and very simple formal, physicochemical, dynamical hierarchy involving water and monomers at level one, polymers and water at level two, and micelles (polymer aggregates) and water at level three. Formulating this system as a simple two-dimensional molecular dynamics (MD) lattice gas allows us within one dynamical system to demonstrate the successive emergence of two higher levels (three levels all together) of robust structures with associated properties. Second, we demonstrate how the framework for dynamical hierarchies can be used for realistic (predictive) physicochemical simulation of molecular self-assembly and self-organization processes. We discuss the detailed process of micellation using the three-dimensional MD lattice gas. Finally, from these examples we can infer principles about formal dynamical hierarchies. We present an ansatz for how to generate robust, higher-order emergent properties in formal dynamical systems that is based on a conjecture of a necessary minimal complexity within the fundamental interacting structures once a particular simulation framework is chosen.

[1]  W. Banzhaf,et al.  Self-organization in a system of binary strings with spatial interactions , 1999 .

[2]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[3]  R. J. Bagley,et al.  Spontaneous emergence of a metabolism , 1990 .

[4]  Walter Fontana,et al.  Evolution of a metabolism , 1992 .

[5]  Pier Luigi Luisi,et al.  Self-replicating Reverse Micelles and Chemical Autopoiesis , 1990 .

[6]  Steen Rasmussen,et al.  The coreworld: emergence and evolution of cooperative structures in a computational chemistry , 1990 .

[7]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[8]  Narendra S. Goel,et al.  Movable Finite Automata (MFA): A New Tool for Computer Modeling of Living Systems , 1987, ALIFE.

[9]  D. van der Spoel,et al.  Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: Micellar structure and chain relaxation , 2000 .

[10]  Christopher L. Barrett,et al.  A Note on Simulation and Dynamical Hierarchies , 1996 .

[11]  A. Scott Stairway to the Mind , 1995, Springer New York.

[12]  Steen Rasmussen,et al.  Self-reproduction of dynamical hierarchies in chemical systems , 1998 .

[13]  S. Kauffman,et al.  Autocatalytic replication of polymers , 1986 .

[14]  Barry W. Ninham,et al.  Molecular forces in the self-organization of amphiphiles , 1986 .

[15]  Michael L. Klein,et al.  Molecular dynamics study of a sodium octanoate micelle in aqueous solution , 1988 .

[16]  Steen Rasmussen,et al.  Dynamics and Simulation of Micellar Self-Reproduction , 2000 .

[17]  Steen Rasmussen,et al.  The Lattice Molecular Automaton(LMA): A Simulation System for Constructive Molecular Dynamics , 1998 .

[18]  Steen Rasmussen,et al.  Simulation and dynamics of entropy-driven, molecular self-assembly processes , 1997 .

[19]  Pier Luigi Luisi,et al.  Enzymatic RNA Synthesis in Self-Reproducing Vesicles: An Approach to the Construction of a Minimal Synthetic Cell , 1994 .

[20]  A. Lehninger Principles of Biochemistry , 1984 .

[21]  Peter V. Coveney,et al.  Simulation of Self-Reproducing Micelles Using a Lattice-Gas Automaton , 1996 .

[22]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[23]  Pier Luigi Luisi,et al.  Autocatalytic self-replicating micelles as models for prebiotic structures , 1992, Nature.

[24]  Steen Rasmussen,et al.  Lattice Molecular Automaton (LMA): A Physico-Chemical Simulation System for Constructive Molecular Dynamics , 1996 .

[25]  Hiroki Sayama,et al.  A New Structurally Dissolvable Self-Reproducing Loop Evolving in a Simple Cellular Automata Space , 1999, Artificial Life.

[26]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[27]  C. Emmeche,et al.  On emergence and explanation , 1997 .

[28]  Peter A. J. Hilbers,et al.  Structure of a water/oil interface in the presence of micelles: A computer simulation study , 1991 .

[29]  Gerhard Gompper,et al.  Mobility and elasticity of self-assembled membranes. , 1999 .

[30]  B Ostrovsky,et al.  Applications of parallel computing to biological problems. , 1995, Annual review of biophysics and biomolecular structure.

[31]  Martin Nilsson,et al.  Bridging Nonliving and Living Matter , 2003, Artificial Life.

[32]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[33]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[34]  Takashi Ikegami,et al.  Model of Self-Replicating Cell Capable of Self-Maintenance , 1999, ECAL.

[35]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[36]  P. Privalov,et al.  Stability of protein structure and hydrophobic interaction. , 1988, Advances in protein chemistry.

[37]  Tommaso Toffoli,et al.  Programmable Matter: Concepts and Realization , 1993, Int. J. High Speed Comput..

[38]  P. V. Coveney,et al.  Lattice-Gas Simulations of Ternary Amphiphilic Fluid Flow in Porous Media , 1998 .

[39]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[40]  J. S. McCaskill Polymer chemistry on tape: A computational model for emergent genetics. , 1988 .

[41]  C. Langton Self-reproduction in cellular automata , 1984 .

[42]  S. Kauffman Autocatalytic sets of proteins. , 1986 .

[43]  Barry McMullin,et al.  Rediscovering Computational Autopoiesis , 1997 .

[44]  Peter V. Coveney,et al.  A lattice-gas model of microemulsions , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Joshua R. Smith,et al.  Lattice polymer automata , 1994 .

[46]  W. Fontana,et al.  “The arrival of the fittest”: Toward a theory of biological organization , 1994 .

[47]  B. Widom,et al.  Lattice model of microemulsions , 1986 .

[48]  Christopher L. Barrett,et al.  Elements of a Theory of Simulation , 1995, ECAL.