Simulated image of the shadow of the Kerr–Newman–NUT–Kiselev black hole in the Rastall gravity with a thin accretion disk

[1]  C. Gammie,et al.  Spherical Accretion in Alternative Theories of Gravity , 2021, The Astrophysical Journal.

[2]  Qiang Wu,et al.  Thin accretion disk onto slowly rotating black holes in Einstein-Æther theory , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  C. Bambi,et al.  Dynamics and fundamental frequencies of test particles orbiting Kerr–Newman–NUT–Kiselev black hole in Rastall gravity , 2021, The European Physical Journal Plus.

[4]  A. Abdujabbarov,et al.  Dynamics of Magnetized and Magnetically Charged Particles around Regular Nonminimal Magnetic Black Holes , 2021, Galaxies.

[5]  A. Abdujabbarov,et al.  Regular Bardeen Black Holes in Anti-de Sitter Spacetime versus Kerr Black Holes through Particle Dynamics , 2021, Galaxies.

[6]  C. Bambi,et al.  Motion of particles and gravitational lensing around the (2+1)-dimensional BTZ black hole in Gauss–Bonnet gravity , 2021, The European Physical Journal C.

[7]  A. Ditta,et al.  Relativistic accretion mechanism for some black holes , 2020, Chinese Journal of Physics.

[8]  C. Bambi,et al.  Charged particle motion around non-singular black holes in conformal gravity in the presence of external magnetic field , 2020, The European Physical Journal C.

[9]  C. Bambi,et al.  On the properties of a deformed extension of the NUT space-time , 2020, The European Physical Journal C.

[10]  Suvankar Paul,et al.  Observational signatures of wormholes with thin accretion disks , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  F. P. Zen,et al.  Kerr–Newman–NUT–Kiselev black holes in Rastall theory of gravity and Kerr/CFT correspondence , 2019, Annals of Physics.

[12]  F. P. Zen,et al.  Kerr/CFT correspondence on Kerr-Newman-NUT-Quintessence black hole , 2019, The European Physical Journal Plus.

[13]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[14]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[15]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[16]  A. John Black hole accretion in scalar–tensor–vector gravity , 2016, Monthly Notices of the Royal Astronomical Society.

[17]  N. Yunes,et al.  Black hole shadow as a test of general relativity: quadratic gravity , 2018, Classical and Quantum Gravity.

[18]  M. Visser Rastall gravity is equivalent to Einstein gravity , 2017, Physics Letters B.

[19]  Rahul Kumar,et al.  Rotating black hole in Rastall theory , 2017, The European Physical Journal C.

[20]  I. Licata,et al.  Einstein and Rastall theories of gravitation in comparison , 2017, 1712.09307.

[21]  C. Bambi Black Holes: A Laboratory for Testing Strong Gravity , 2017 .

[22]  N. Vittorio,et al.  Strong evidence for an accelerating Universe , 2017, Astronomy & Astrophysics.

[23]  H. Moradpour,et al.  Black hole solutions in Rastall theory , 2016, 1610.03881.

[24]  D. Doneva,et al.  Accretion disks around neutron and strange stars in R+aR2 gravity , 2016, 1606.01529.

[25]  A. Jawad,et al.  Accretion onto some well-known regular black holes , 2016, 1602.05952.

[26]  S. Bergliaffa,et al.  Accretion disks around black holes in modified strong gravity , 2012, 1212.2640.

[27]  M. Abramowicz,et al.  Foundations of Black Hole Accretion Disk Theory , 2011, Living reviews in relativity.

[28]  Guy Perrin,et al.  GYOTO: a new general relativistic ray-tracing code , 2011, 1109.4769.

[29]  M. Jamil,et al.  Accretion of Phantom Energy and Generalized Second Law of Thermodynamics for Einstein-Maxwell-Gauss-Bonnet Black Hole , 2011, 1101.1583.

[30]  K. Cheng,et al.  Thin accretion discs around neutron and quark stars , 2009, 0903.4746.

[31]  S. Couch,et al.  ACCRETION ONTO “SEED” BLACK HOLES IN THE FIRST GALAXIES , 2008, 0809.2404.

[32]  P. Anninos,et al.  Hydrodynamic Simulations of Tilted Thick-Disk Accretion onto a Kerr Black Hole , 2004, astro-ph/0403356.

[33]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[34]  P. Amaro-Seoane,et al.  Accretion of stars on to a massive black hole: a realistic diffusion model and numerical studies , 2004, astro-ph/0401163.

[35]  V. Kiselev Quintessence and black holes , 2003 .

[36]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[37]  D. Meier,et al.  General Relativistic Simulations of Early Jet Formation in a Rapidly Rotating Black Hole Magnetosphere , 1999, astro-ph/9907435.

[38]  D. Ryu,et al.  Numerical simulations of standing shocks in accretion flows around black holes: a comparative study , 1996, astro-ph/9605116.

[39]  Kip S. Thorne,et al.  Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk , 1974 .