Modified Picard Integrator for Spaceflight Mechanics

This paper investigates the applicability of the Parker–Sochacki Picard iteration method for spaceflight mechanics. Notably, solving initial value problems, parallel integration of multiple trajectories, and high-order state transition tensor computations are addressed. This paper presents a systematic approach to transforming vector fields to polynomial form, which is required for the method investigated. The application of this approach is presented on a few vector fields, including spherical harmonics gravity field. The initial cost of transforming the vector field can be justified by the performance of the initial value problem solver. Additionally, this polynomial form of the vector field is used in the calculation of state transition tensors with differentiation of polynomials only. This reduces the computations required to obtain state transition tensors for some problems and is discussed in this paper. An efficient representation of vector fields in polynomial form benefits the implementation of t...

[1]  Terry Feagin,et al.  Matrix formulation of the Picard method for parallel computation , 1983 .

[2]  Ryan P. Russell,et al.  Global search for planar and three-dimensional periodic orbits near Europa , 2006 .

[3]  Rodney L. Anderson,et al.  Dynamical Systems Analysis of Planetary Flybys and Approach: Planar Europa Orbiter , 2010 .

[4]  James D. Turner,et al.  A high order method for estimation of dynamic systems , 2008 .

[5]  James S. Sochacki,et al.  Implementing the Picard iteration , 1996, Neural Parallel Sci. Comput..

[6]  B. Villac Dynamics in the Hill problem with applications to spacecraft maneuvers , 2003 .

[7]  J. Sochacki,et al.  Singular Perturbations and Approximations for Integrodifferential Equations , 2001 .

[8]  David Kirk,et al.  NVIDIA cuda software and gpu parallel computing architecture , 2007, ISMM '07.

[9]  Erich Kaltofen,et al.  Topics of computer algebra , 2003 .

[10]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[11]  Sang H. Park,et al.  Nonlinear trajectory navigation , 2007 .

[12]  J. Henrard Hill's Problem in lunar theory , 1978 .

[13]  Ernst Hairer,et al.  Classical Mathematical Theory , 1987 .

[14]  T. Apostol Mathematical Analysis , 1957 .

[15]  K. Howell,et al.  Trajectory design strategies applied to temporary comet capture including Poincaré maps and invariant manifolds , 2013 .

[16]  R. Park,et al.  Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .

[17]  Ryan P. Russell,et al.  A GPU accelerated multiple revolution lambert solver for fast mission design , 2010 .

[18]  David B. Kirk,et al.  Introduction to data parallelism and CUDA C , 2013 .

[19]  Nicholas J. Higham,et al.  Matlab guide , 2000 .

[20]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[21]  Mark A. Franklin,et al.  Parallel Solution of Ordinary Differential Equations , 1978, IEEE Transactions on Computers.

[22]  Rodney L. Anderson,et al.  Role of Invariant Manifolds in Low-Thrust Trajectory Design , 2004 .

[23]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[24]  J. Marsden,et al.  Dynamical Systems, the Three-Body Problem and Space Mission Design , 2009 .

[25]  Erich Kaltofen,et al.  Computer algebra handbook , 2002 .

[26]  Liam M. Healy,et al.  Comparison Of Accuracy Assessment Techniques For Numerical Integration , 2003 .

[27]  M. Uschold,et al.  Methods and applications , 1953 .

[28]  Benjamin F. Villac,et al.  Using FLI maps for preliminary spacecraft trajectory design in multi-body environments , 2008 .

[29]  John L. Junkins,et al.  Modified Chebyshev-Picard Iteration Methods for Orbit Propagation , 2011 .

[30]  E. A. Nurminskii,et al.  Parker-Sochacki method for solving systems of ordinary differential equations using graphics processors , 2011 .

[31]  Diane C. Davis,et al.  Application of Periapse Maps for the Design of Trajectories Near the Smaller Primary in Multi-Body Regimes , 2012 .

[32]  Aubrey B. Poore,et al.  Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches , 2014 .

[33]  Yanan Yu,et al.  Dynamic iterations for the solution of ordinary differential equations on multicore processors , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[34]  Jason Tichy,et al.  GPU Accelerated Conjunction Assessment with Applications to Formation Flight and Space Debris Tracking , 2013 .

[35]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[36]  Puneet Singla,et al.  An Approach for Nonlinear Uncertainty Propagation: Application to Orbital Mechanics , 2009 .

[37]  S. Alfano,et al.  Satellite Conjunction Monte Carlo Analysis , 2009 .

[38]  Shannon L. Coffey,et al.  Applications of parallel processing to astrodynamics , 1996 .