Modeling Piezoresistive Microcantilever Sensor Response to Surface Stress for Biochemical Sensors

This paper considers mechanical stress and strain in a piezoresistive cantilever sensor under surface stress loading, which is the loading condition that occurs in biochemical sensing applications. Finite element simulations examine the piezoresistor sensitivity due to changes in cantilever length, width, and thickness, and piezoresistor size, location, and depth. A few unexpected results are found. Unlike cantilevers designed for atomic force microscopy, cantilevers for biochemical sensing should be short and wide. While shallow piezoresistors offer good sensitivity, the piezoresistor may extend far into the thickness of the cantilever and still be quite effective. The paper concludes with comments on design guidelines for piezoresistive cantilever sensors.

[1]  M. Madou Fundamentals of microfabrication , 1997 .

[2]  J Thaysen,et al.  Optimised cantilever biosensor with piezoresistive read-out. , 2003, Ultramicroscopy.

[3]  A K Chakraborty,et al.  Origin of nanomechanical cantilever motion generated from biomolecular interactions. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Kenny,et al.  Dual-Axis Piezoresistive AFM Cantilever for Independent Detection of Vertical and Lateral Forces , 1998 .

[5]  Roberto Raiteri,et al.  Sensing of biological substances based on the bending of microfabricated cantilevers , 1999 .

[6]  R. Pierret,et al.  Advanced semiconductor fundamentals , 1987 .

[7]  T. Kenny,et al.  High-sensitivity piezoresistive cantilevers under 1000 Å thick , 1999 .

[8]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[9]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[10]  Drechsler,et al.  A cantilever array-based artificial nose , 2000, Ultramicroscopy.

[11]  Thomas W. Kenny,et al.  Low‐stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope , 1996 .

[12]  D. Gerstenberg,et al.  Physics of Thin Films , 1964 .

[13]  Hans-Jürgen Butt,et al.  A Sensitive Method to Measure Changes in the Surface Stress of Solids , 1996 .

[14]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[15]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[16]  Anja Boisen,et al.  Cantilever surface stress sensors with single-crystalline silicon piezoresistors , 2005 .

[17]  Thomas Thundat,et al.  Thermal and ambient-induced deflections of scanning force microscope cantilevers , 1994 .

[18]  Christiane Ziegler,et al.  Cantilever-based biosensors , 2004, Analytical and bioanalytical chemistry.

[19]  J. Hoh,et al.  A biosensor based on micromechanical interrogation of living cells. , 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[20]  Y. Kanda,et al.  A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.

[21]  Teodor Gotszalk,et al.  Characterization of a cantilever with an integrated deflection sensor , 1995 .

[22]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[23]  J. Kjems,et al.  Nanomechanical sensing of DNA sequences using piezoresistive cantilevers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[24]  B. Rogers,et al.  Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array , 2003 .

[25]  D. Kauzlarick,et al.  Fundamentals of microfabrication, the science of miniaturization, 2nd edition [Book Review] , 2003, IEEE Engineering in Medicine and Biology Magazine.

[26]  J. Thaysen,et al.  Environmental sensors based on micromachined cantilevers with integrated read-out , 2000, Ultramicroscopy.

[27]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[28]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[29]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[30]  Cengiz S. Ozkan,et al.  High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding , 2003 .

[31]  T. Kenny,et al.  1/f noise considerations for the design and process optimization of piezoresistive cantilevers , 2000, Journal of Microelectromechanical Systems.

[32]  R. A. Gudmundsen,et al.  Physics of thin films, vol. 2 , 1965 .

[33]  R. Warmack,et al.  Multiple-input microcantilever sensors , 2000, Ultramicroscopy.

[34]  O. N. Tufte,et al.  Piezoresistive Properties of Silicon Diffused Layers , 1963 .

[35]  Shih-Ming Yang,et al.  Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor , 2007 .

[36]  A. G. Milnes,et al.  Piezoresistance of Diffused Layers in Cubic Semiconductors , 1963 .

[37]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[38]  M. Grattarola,et al.  CHANGES IN SURFACE STRESS MEASURED WITH AN ATOMIC FORCE MICROSCOPE , 1998 .