The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line
暂无分享,去创建一个
[1] HI fluctuations at large redshifts: III — Simulating the signal expected at GMRT , 2004, astro-ph/0402262.
[2] A. Stebbins,et al. ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.
[3] R. Nichol,et al. The 2dF-SDSS LRG and QSO Survey: the LRG 2-point correlation function and redshift-space distortions , 2006, astro-ph/0612400.
[4] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[5] Higher Order Contributions to the 21 cm Power Spectrum , 2006, astro-ph/0610054.
[6] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[7] Alan E. E. Rogers,et al. The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.
[8] Marc Moniez,et al. BAORadio: A digital pipeline for radio interferometry and 21 cm mapping of large scale structures , 2012, 1209.3266.
[9] Martin J. Rees,et al. 21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .
[10] Mervyn J. Lynch,et al. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.
[11] Hannes Jensen,et al. Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.
[12] Jason Manley,et al. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.
[13] J. Schaye,et al. Probing reionization with LOFAR using 21-cm redshift space distortions , 2013, 1303.5627.
[14] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[15] Xuelei Chen,et al. FORECASTS ON THE DARK ENERGY AND PRIMORDIAL NON-GAUSSIANITY OBSERVATIONS WITH THE TIANLAI CYLINDER ARRAY , 2014, 1410.7794.
[16] Abraham Loeb,et al. 21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.
[17] D. Kaplan,et al. The EoR sensitivity of the Murchison Widefield Array , 2012, 1204.3111.
[18] Martin White,et al. Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.
[19] Cathryn M. Trott,et al. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.
[20] Matias Zaldarriaga,et al. Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.
[21] P. Shapiro,et al. Redshift-space distortion of the 21-cm background from the epoch of reionization – I. Methodology re-examined , 2011, 1104.2094.
[22] Matias Zaldarriaga,et al. How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.
[23] Abhirup Datta,et al. BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .
[24] I. Szapudi,et al. Non-perturbative effects of geometry in wide-angle redshift distortions , 2008, 0802.2940.
[25] Bryna Hazelton,et al. FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.
[26] Abraham Loeb,et al. The physics and early history of the intergalactic medium , 2006, astro-ph/0611541.
[27] S. Majumdar,et al. The effect of peculiar velocities on the epoch of reionization 21-cm signal , 2012, 1209.4762.
[28] M. Morales,et al. Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.
[29] A. Loeb,et al. A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.
[30] R. Cen,et al. 21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.
[31] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[32] The 2dF Galaxy Redshift Survey: spherical harmonics analysis of fluctuations in the final catalogue , 2004, astro-ph/0406513.
[33] A spherical harmonic analysis of redshift space , 1994, astro-ph/9409027.
[34] M. Strauss,et al. Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – II. Redshift distortions and $\xi (r_p, \pi)$ , 1993, astro-ph/9308013.
[35] Alan E. E. Rogers,et al. Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.
[36] Kevin Bandura,et al. An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.
[37] N. Udaya Shankar,et al. IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.
[38] Yong-Seon Song,et al. Reconstructing the history of structure formation using redshift distortions , 2008, 0807.0810.
[39] David R. DeBoer,et al. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS , 2012, 1210.2413.
[40] Christopher L. Williams,et al. A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.
[41] David F. Moore,et al. A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.
[42] E. Turner,et al. A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies. , 1977 .
[43] David R. DeBoer,et al. WHAT NEXT-GENERATION 21 cm POWER SPECTRUM MEASUREMENTS CAN TEACH US ABOUT THE EPOCH OF REIONIZATION , 2013, 1310.7031.
[44] James Aguirre,et al. A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION , 2011, 1103.2135.
[45] David F. Moore,et al. New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7 , 2013, 1304.4991.
[46] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[47] S. Furlanetto,et al. Efficient Simulations of Early Structure Formation and Reionization , 2007, 0704.0946.