The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line

The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is affected by redshift space distortions, and is inherently anisotropic between the line-of-sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground "wedge". Although foreground subtraction techniques are actively being developed, a "foreground avoidance" approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyze the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21 cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (HERA and the SKA), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like CHIME can place non-trivial constraints on cosmological parameters.

[1]  HI fluctuations at large redshifts: III — Simulating the signal expected at GMRT , 2004, astro-ph/0402262.

[2]  A. Stebbins,et al.  ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.

[3]  R. Nichol,et al.  The 2dF-SDSS LRG and QSO Survey: the LRG 2-point correlation function and redshift-space distortions , 2006, astro-ph/0612400.

[4]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[5]  Higher Order Contributions to the 21 cm Power Spectrum , 2006, astro-ph/0610054.

[6]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[7]  Alan E. E. Rogers,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[8]  Marc Moniez,et al.  BAORadio: A digital pipeline for radio interferometry and 21 cm mapping of large scale structures , 2012, 1209.3266.

[9]  Martin J. Rees,et al.  21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .

[10]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[11]  Hannes Jensen,et al.  Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.

[12]  Jason Manley,et al.  OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.

[13]  J. Schaye,et al.  Probing reionization with LOFAR using 21-cm redshift space distortions , 2013, 1303.5627.

[14]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[15]  Xuelei Chen,et al.  FORECASTS ON THE DARK ENERGY AND PRIMORDIAL NON-GAUSSIANITY OBSERVATIONS WITH THE TIANLAI CYLINDER ARRAY , 2014, 1410.7794.

[16]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[17]  D. Kaplan,et al.  The EoR sensitivity of the Murchison Widefield Array , 2012, 1204.3111.

[18]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[19]  Cathryn M. Trott,et al.  THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.

[20]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[21]  P. Shapiro,et al.  Redshift-space distortion of the 21-cm background from the epoch of reionization – I. Methodology re-examined , 2011, 1104.2094.

[22]  Matias Zaldarriaga,et al.  How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.

[23]  Abhirup Datta,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .

[24]  I. Szapudi,et al.  Non-perturbative effects of geometry in wide-angle redshift distortions , 2008, 0802.2940.

[25]  Bryna Hazelton,et al.  FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.

[26]  Abraham Loeb,et al.  The physics and early history of the intergalactic medium , 2006, astro-ph/0611541.

[27]  S. Majumdar,et al.  The effect of peculiar velocities on the epoch of reionization 21-cm signal , 2012, 1209.4762.

[28]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[29]  A. Loeb,et al.  A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.

[30]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[31]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[32]  The 2dF Galaxy Redshift Survey: spherical harmonics analysis of fluctuations in the final catalogue , 2004, astro-ph/0406513.

[33]  A spherical harmonic analysis of redshift space , 1994, astro-ph/9409027.

[34]  M. Strauss,et al.  Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – II. Redshift distortions and $\xi (r_p, \pi)$ , 1993, astro-ph/9308013.

[35]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[36]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[37]  N. Udaya Shankar,et al.  IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.

[38]  Yong-Seon Song,et al.  Reconstructing the history of structure formation using redshift distortions , 2008, 0807.0810.

[39]  David R. DeBoer,et al.  THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS , 2012, 1210.2413.

[40]  Christopher L. Williams,et al.  A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.

[41]  David F. Moore,et al.  A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.

[42]  E. Turner,et al.  A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies. , 1977 .

[43]  David R. DeBoer,et al.  WHAT NEXT-GENERATION 21 cm POWER SPECTRUM MEASUREMENTS CAN TEACH US ABOUT THE EPOCH OF REIONIZATION , 2013, 1310.7031.

[44]  James Aguirre,et al.  A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION , 2011, 1103.2135.

[45]  David F. Moore,et al.  New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7 , 2013, 1304.4991.

[46]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[47]  S. Furlanetto,et al.  Efficient Simulations of Early Structure Formation and Reionization , 2007, 0704.0946.