A promising Bi-doped La0.8Sr0.2Ni0.2Fe0.8O3-δ oxygen electrode for reversible solid oxide cells

[1]  S. Chan,et al.  Activation of LSCF–YSZ interface by cobalt migration during electrolysis operation in solid oxide electrolysis cells , 2022, International Journal of Hydrogen Energy.

[2]  Shao‐Yu Wang,et al.  Oxygen permeation properties of Bi-doped La0.8Sr0.2FeO3-δ planar ceramic membranes at intermediate temperature , 2022, Separation and Purification Technology.

[3]  Fang Wang,et al.  Investigation on Nd1–Ca BaCo2O5+δ double perovskite as new oxygen electrode materials for reversible solid oxide cells , 2022, Journal of Alloys and Compounds.

[4]  H. Miao,et al.  In-Situ Synthesis of Sm0.5Sr0.5Co0.5O3-δ@Sm0.2Ce0.8O1.9 Composite Oxygen Electrode for Electrolyte-Supported Reversible Solid Oxide Cells (RSOC) , 2022, Energies.

[5]  Tongxiang Liang,et al.  Evaluation of La0.6Sr0.4CoO3-δ-Ce0.85Sm0.075Nd0.075O2-δ composite cathodes for intermediate temperature solid oxide fuel cells , 2022, Ceramics International.

[6]  R. Steinberger‐Wilckens,et al.  Lanthanum nickelates and their application in Solid Oxide Cells – The LaNi1-xFexO3 system and other ABO3-type nickelates , 2021, Solid State Ionics.

[7]  C. Flox,et al.  Two orders of magnitude enhancement in oxygen evolution reactivity of La0.7Sr0.3Fe1−xNixO3− by improving the electrical conductivity , 2021, Nano Energy.

[8]  Y. Xiong,et al.  Effects of Gd0.8Ce0.2O1.9−δ coating with different thickness on electrochemical performance and long-term stability of La0.8Sr0.2Co0.2Fe0.8O3-δ cathode in SOFCs , 2021, International Journal of Hydrogen Energy.

[9]  Z. Lü,et al.  Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3-δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells , 2021, International Journal of Hydrogen Energy.

[10]  B. Yin,et al.  Bi-doped La1.5Sr0.5Ni0.5Mn0.5O4+δ as an efficient air electrode material for SOEC , 2021, International Journal of Hydrogen Energy.

[11]  Zhonghua Zhu,et al.  Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells , 2021 .

[12]  K. Patchigolla,et al.  A novel integration of a green power-to-ammonia to power system: Reversible solid oxide fuel cell for hydrogen and power production coupled with an ammonia synthesis unit , 2021, International Journal of Hydrogen Energy.

[13]  B. Chi,et al.  Tailored Sr-Co-free perovskite oxide as an air electrode for high-performance reversible solid oxide cells , 2021, Science China Materials.

[14]  Shibo Wang,et al.  Assessment of cobalt–free ferrite–based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3–δ (Ln = lanthanide) as cathodes for IT-SOFCs , 2020 .

[15]  M. Mogensen Materials for reversible solid oxide cells , 2020, Current Opinion in Electrochemistry.

[16]  T. Wei,et al.  Preparation and electrochemical properties of an La-doped Pr2Ni0.85Cu0.1Al0.05O4+δ cathode material for an IT-SOFC , 2020 .

[17]  Kongfa Chen,et al.  Molten Salt Synthesis of High-Performance, Nanostructured La0.6Sr0.4FeO3−δ Oxygen Electrode of a Reversible Solid Oxide Cell , 2020, Materials.

[18]  B. Chi,et al.  High performance and stability of double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+ as an oxygen electrode for reversible solid oxide electrochemical cell , 2020, Journal of Energy Chemistry.

[19]  Chung‐Jen Tseng,et al.  Production of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode with graded porosity for improving proton-conducting solid oxide fuel cells , 2019 .

[20]  H. Frandsen,et al.  Reversible solid-oxide cells for clean and sustainable energy , 2019, Clean Energy.

[21]  François Maréchal,et al.  Reversible solid oxide systems for energy and chemical applications – Review & perspectives , 2019, Journal of Energy Storage.

[22]  N. Shikazono,et al.  Achievements of NEDO Durability Projects on SOFC Stacks in the Light of Physicochemical Mechanisms , 2019, Fuel Cells.

[23]  Xiaojun Wu,et al.  Oxygen-Deficient Ruddlesden-Popper-Type Lanthanum Strontium Cuprate Doped with Bismuth as a Cathode for Solid Oxide Fuel Cells. , 2019, ACS applied materials & interfaces.

[24]  Y. E. Kalay,et al.  One pot synthesis of (La,Sr)CoO3/(La,Sr)2CoO4 for IT-SOFCs cathodes , 2018, International Journal of Hydrogen Energy.

[25]  Muhammad Shirjeel Khan,et al.  Porous Scandia-Stabilized Zirconia Layer for Enhanced Performance of Reversible Solid Oxide Cells. , 2018, ACS applied materials & interfaces.

[26]  K. Yoon,et al.  In Situ Synthesized La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.1Ce0.9O1.95 Nanocomposite Cathodes via a Modified Sol–Gel Process for Intermediate Temperature Solid Oxide Fuel Cells , 2018 .

[27]  C. Xia,et al.  Bismuth-doped La1.75Sr0.25NiO4+δ as a novel cathode material for solid oxide fuel cells , 2017 .

[28]  B. Chi,et al.  High-performance oxygen electrode for reversible solid oxide cells with power generation and hydrogen production at intermediate temperature , 2017 .

[29]  G. Guan,et al.  (Bi 0.15 La 0.27 Sr 0.53 )(Co 0.25 Fe 0.75 )O 3-δ perovskite: A novel cathode material for intermediate temperature solid oxide fuel cells , 2016 .

[30]  John Bøgild Hansen,et al.  Solid oxide electrolysis--a key enabling technology for sustainable energy scenarios. , 2015, Faraday discussions.

[31]  Ke-ning Sun,et al.  The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6−δ (x = 1.9–2.0) as intermediate-temperature solid oxide fuel cell cathodes , 2014 .

[32]  Tak-Hyoung Lim,et al.  Electrochemical properties of B-site Ni doped layered perovskite cathodes for IT-SOFCs , 2014 .

[33]  F. Chen,et al.  Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells. , 2014, ACS applied materials & interfaces.

[34]  Sun-Ju Song,et al.  Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes , 2013 .

[35]  A. Smirnova,et al.  Structural Features and Transport Properties of La(Sr)Fe1-xNixO3-δ– Ce0.9Gd0.1O2-δ Nanocomposites—Advanced Materials for IT SOFC Cathodes , 2013 .

[36]  Young Min Park,et al.  Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells , 2012, Korean Journal of Chemical Engineering.

[37]  Zongping Shao,et al.  A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO3 − δ Perovskite Cathodes , 2011 .

[38]  Hailei Zhao,et al.  Systematic investigation on structure stability and oxygen permeability of Sr-doped BaCo0.7Fe0.2Nb0.1O3−δ ceramic membranes , 2010 .

[39]  F. Tietz,et al.  Long-Term Study of MIEC Cathodes for Intermediate Temperature Solid Oxide Fuel Cells , 2009 .

[40]  R. Gorte,et al.  Relationship between Electrical Behavior and Structural Characteristics in Sr-Doped LaNi0.6Fe0.4O3-δ Mixed Oxides , 2009 .

[41]  A. Virkar,et al.  Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with La0.75Sr0.25CuO2.5-δ cathode , 2005 .

[42]  Y. Sakurai,et al.  Properties of La1−ySryNi1−xFexO3 as a cathode material for a low-temperature operating SOFC , 2002 .

[43]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[44]  H. Inaba,et al.  Thermal expansion of Gd-doped ceria and reduced ceria , 2000 .

[45]  N. Imanishi,et al.  Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells , 1999 .

[46]  A. Ruffa Thermal expansion in insulating materials , 1980 .

[47]  Min Hwan Lee,et al.  Effect of Surface-Specific Treatment by Infiltration into LaNi6Fe4O3- δ Cathodic Backbone for Solid Oxide Fuel Cells , 2019, Journal of The Electrochemical Society.

[48]  Y. E. Kalay,et al.  Segregation Resistant Nanocrystalline/Amorphous (La, Sr) CoO3-(La,Sr)2CoO4 Composite Cathodes for IT-SOFCs , 2019, Journal of The Electrochemical Society.