A globally convergent variant of mid-point method for finding the matrix sign

[1]  F. Soleymani,et al.  A Class of Kung–Traub-Type Iterative Algorithms for Matrix Inversion , 2015, International Journal of Applied and Computational Mathematics.

[2]  Fazlollah Soleymani,et al.  A fast convergent numerical method for matrix sign function with application in SDEs , 2015, J. Comput. Appl. Math..

[3]  F. Soleymani,et al.  An Algorithm for Computing Geometric Mean of Two Hermitian Positive Definite Matrices via Matrix Sign , 2014 .

[4]  Fazlollah Soleymani,et al.  Approximating the Matrix Sign Function Using a Novel Iterative Method , 2014 .

[5]  Fazlollah Soleymani,et al.  Some Matrix Iterations for Computing Matrix Sign Function , 2014, J. Appl. Math..

[6]  Jesus Leyva-Ramos,et al.  A note on mode decoupling of linear time-invariant systems using the generalized sign matrix , 2013, Appl. Math. Comput..

[7]  Federico Greco,et al.  A Padé family of iterations for the matrix sign function and related problems , 2012, Numer. Linear Algebra Appl..

[8]  D. K. R. Babajee,et al.  Several improvements of the 2-point third order midpoint iterative method using weight functions , 2012, Appl. Math. Comput..

[9]  Fazlollah Soleymani,et al.  A General Three-Step Class of Optimal Iterations for Nonlinear Equations , 2011 .

[10]  Johanna S. Hardin,et al.  A method for generating realistic correlation matrices , 2011, 1106.5834.

[11]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[12]  Enrique S. Quintana-Ortí,et al.  Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function , 2007, Numerical Algorithms.

[13]  Nicholas J. Higham,et al.  Algorithms for the matrix pth root , 2005, Numerical Algorithms.

[14]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[15]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[16]  A. Laub,et al.  Rational iterative methods for the matrix sign function , 1991 .

[17]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[18]  E. S. Quintana‐Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999 .

[19]  J. Demmel,et al.  Using the Matrix Sign Function to Compute Invariant Subspaces , 1998, SIAM J. Matrix Anal. Appl..

[20]  M. Burns Math in Action. , 1996 .