Behavior of colloidal microparticles in interference field created by several laser beams

In this paper we describe properties of optical forces and torques acting on colloidal particles placed into interference laser field created by three plane waves having wavevectors in one plane. We assume interference of all three beams and we study the properties of this 2D optical lattice and particle behavior. This set-up enables selective confinement according to particle sizes which could be used for optical extraction of some components from colloidal system.

[1]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[2]  Pavel Zemánek,et al.  Optical forces acting on Rayleigh particle placed into interference field , 2004 .

[3]  P. Zemánek,et al.  Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. , 1999, Optics letters.

[4]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[5]  Michael W. Berns,et al.  Interferometric optical tweezers , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[6]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[7]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[8]  P. T. Korda,et al.  Kinetically locked-in colloidal transport in an array of optical tweezers. , 2002, Physical review letters.

[9]  Vincent Daria,et al.  Interactive light-driven and parallel manipulation of inhomogeneous particles. , 2002, Optics express.

[10]  W Sibbett,et al.  Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. , 2001, Optics letters.

[11]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[12]  Gérard Gréhan,et al.  GENERALIZED LORENZ-MIE THEORIES, FROM PAST TO FUTURE , 2000 .

[13]  Alex Terray,et al.  Microfluidic Control Using Colloidal Devices , 2002, Science.

[14]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[15]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[16]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[17]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[18]  J. Qi,et al.  Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals. , 2003, Optics letters.

[19]  Pavel Zemánek,et al.  Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  W. Sibbett,et al.  Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam , 2002, Nature.

[21]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Grover A. Swartzlander,et al.  Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap , 1999 .

[23]  Tsvi Tlusty,et al.  OPTICAL GRADIENT FORCES OF STRONGLY LOCALIZED FIELDS , 1998 .

[24]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[25]  P. C. Chaumet,et al.  Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate , 2000, physics/0305042.