A novel cuproptosis-related diagnostic gene signature and differential expression validation in atherosclerosis

[1]  W. Mao,et al.  OmicStudio: A composable bioinformatics cloud platform with real‐time feedback that can generate high‐quality graphs for publication , 2023, iMeta.

[2]  Minxuan Xu,et al.  Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies , 2023, Cell Death & Disease.

[3]  L. Essen,et al.  Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2 , 2022, Nature Chemical Biology.

[4]  J. Björkegren,et al.  Atherosclerosis: Recent developments , 2022, Cell.

[5]  Brad T. Sherman,et al.  DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) , 2022, Nucleic Acids Res..

[6]  T. Golub,et al.  Copper induces cell death by targeting lipoylated TCA cycle proteins , 2022, Science.

[7]  Ji Miao,et al.  An Emerging Role of Defective Copper Metabolism in Heart Disease , 2022, Nutrients.

[8]  M. Ushio-Fukai,et al.  Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis , 2021, Nature cell biology.

[9]  J. Borén,et al.  Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies—a consensus statement from the European Atherosclerosis Society , 2021, European heart journal.

[10]  P. Carmeliet,et al.  Macrophage-derived glutamine boosts satellite cells and muscle regeneration , 2020, Nature.

[11]  Ya Chun Yu,et al.  Glutamine reliance in cell metabolism , 2020, Experimental & Molecular Medicine.

[12]  M. J. Hashim,et al.  Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study , 2020, Cureus.

[13]  S. Lutsenko,et al.  Copper Transport and Disease: What Can We Learn from Organoids? , 2019, Annual review of nutrition.

[14]  Y. Kamatani,et al.  Transethnic meta-analysis of genome-wide association studies identifies three new loci and characterizes population-specific differences for coronary artery disease , 2019, bioRxiv.

[15]  A. Hale,et al.  Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation , 2019, Cell reports.

[16]  T. Golub,et al.  Mitochondrial metabolism promotes adaptation to proteotoxic stress , 2019, Nature Chemical Biology.

[17]  Ira Tabas,et al.  Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities , 2019, Nature Reviews Cardiology.

[18]  C. Borner,et al.  Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress. , 2018, Metallomics : integrated biometal science.

[19]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[20]  G. Tarantino,et al.  Prediction of carotid intima–media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability , 2018, Journal of gastroenterology and hepatology.

[21]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[22]  Yuchan Zhang,et al.  Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. , 2018, Biomaterials.

[23]  N. Yuldasheva,et al.  Role of glutamine and interlinked asparagine metabolism in vessel formation , 2017, The EMBO journal.

[24]  U. Förstermann,et al.  Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis , 2017, Circulation research.

[25]  M. Trujillo,et al.  Interplay between oxidant species and energy metabolism , 2015, Redox biology.

[26]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[27]  W. März,et al.  Copper, ceruloplasmin, and long-term cardiovascular and total mortality (The Ludwigshafen Risk and Cardiovascular Health Study) , 2014, Free radical research.

[28]  Erling Falk,et al.  Update on acute coronary syndromes: the pathologists' view. , 2013, European heart journal.

[29]  M. Nahrendorf,et al.  Leukocyte Behavior in Atherosclerosis, Myocardial Infarction, and Heart Failure , 2013, Science.

[30]  R. Leboeuf,et al.  Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice. , 2012, Atherosclerosis.

[31]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[32]  L. Lash,et al.  Copper and homocysteine in cardiovascular diseases. , 2011, Pharmacology & therapeutics.

[33]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[34]  H. Elsässer,et al.  Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis , 2010, Proceedings of the National Academy of Sciences.

[35]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[36]  G. Ferns,et al.  The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian cohort. , 2009, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[37]  P. Rothwell,et al.  Histological Correlates of Carotid Plaque Surface Morphology on Lumen Contrast Imaging , 2004, Circulation.

[38]  M. Davies,et al.  Direct Detection and Quantification of Transition Metal Ions in Human Atherosclerotic Plaques: Evidence for the Presence of Elevated Levels of Iron and Copper , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[39]  J. Sasaki,et al.  In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. , 2000, Atherosclerosis.

[40]  R. Nath Copper deficiency and heart disease: molecular basis, recent advances and current concepts. , 1997, The international journal of biochemistry & cell biology.

[41]  G. Breithardt,et al.  Copper-induced inflammatory reactions of rat carotid arteries mimic restenosis/arteriosclerosis-like neointima formation. , 1997, Atherosclerosis.

[42]  B. Frei,et al.  Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. , 1993, Journal of lipid research.

[43]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[44]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..