Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology

We report on the analysis of 214 kb of the parasitic eubacterium Mycoplasma capricolum sequenced by genomic walking techniques. The 287 putative proteins detected to date represent about half of the estimated total number of 500 predicted for this organism. A large fraction of these (75%) can be assigned a likely function as a result of similarity searches. Several important features of the functional organization of this small genome are already apparent. Among these are (i) the expected relatively large number of enzymes involved in metabolic transport and activation, for efficient use of host cell nutrients; (ii) the presence of anabolic enzymes; (iii) the unexpected diversity of enzymes involved in DNA replication and repair: and (iv) a sizeable number of orthologues (82 so far) in Escherichia coli. This survey is beginning to provide a detailed view of how M. capricolum manages to maintain essential cellular processes with a genome much smaller than that of its bacterial relatives.

[1]  R. Nowak Venter wins sequencing race - twice , 1995 .

[2]  R. Nowak Genome research. Venter wins sequencing race--twice. , 1995, Science.

[3]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Sensen,et al.  Complete DNA sequence of yeast chromosome XI , 1994, Nature.

[5]  C. Sander,et al.  From genome sequences to protein function , 1994 .

[6]  G. Schatz,et al.  Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. , 1994, Science.

[7]  R. Durbin,et al.  2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans , 1994, Nature.

[8]  C. Sander,et al.  Yeast chromosome III: new gene functions. , 1994, The EMBO journal.

[9]  Heidi J. Sofia,et al.  Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes , 1993, Nucleic Acids Res..

[10]  Chris Sander,et al.  GeneQuiz: A Workbench for Sequence Analysis , 1994, ISMB.

[11]  C. Hutchison,et al.  A survey of the Mycoplasma genitalium genome by using random sequencing , 1993, Journal of bacteriology.

[12]  M. Miyata,et al.  Mapping of replication initiation site in Mycoplasma capricolum genome by two-dimensional gel-electrophoretic analysis. , 1993, Nucleic acids research.

[13]  P Bork,et al.  Evolutionarily mobile modules in proteins. , 1993, Scientific American.

[14]  A Danchin,et al.  Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333deg; , 1993, Molecular microbiology.

[15]  P. M. Gillevet MULTIPLEX GENOMIC WALKING: INTEGRATION OF THE WET LAB AND COMPUTER LAB INTO A SINGLE PROTOTYPING ENVIRONMENT , 1993 .

[16]  J. Craig Venter,et al.  3,400 new expressed sequence tags identify diversity of transcripts in human brain , 1993, Nature Genetics.

[17]  Amos Bairoch,et al.  The SWISS-PROT protein sequence data bank, recent developments , 1993, Nucleic Acids Res..

[18]  J W Fickett,et al.  Estimation of protein coding density in a corpus of DNA sequence data. , 1993, Nucleic acids research.

[19]  A. Muto,et al.  A small RNA of Mycoplasma capricolum that resembles eukaryotic U6 small nuclear RNA. , 1993, Nucleic acids research.

[20]  Jean-Michel Claverie,et al.  Information Enhancement Methods for Large Scale Sequence Analysis , 1993, Comput. Chem..

[21]  David J. States,et al.  Identification of protein coding regions by database similarity search , 1993, Nature Genetics.

[22]  S. Cole,et al.  Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif‐Str regions , 1993, Molecular microbiology.

[23]  F. Blattner,et al.  Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. , 1993, Nucleic acids research.

[24]  S. Razin Peculiar properties of mycoplasmas: the smallest self-replicating prokaryotes. , 1992, FEMS microbiology letters.

[25]  C. Sander,et al.  Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III , 1992, Protein science : a publication of the Protein Society.

[26]  E. Pirkl,et al.  Construction of an EcoRI restriction map of Mycoplasma pneumoniae and localization of selected genes , 1992, Journal of bacteriology.

[27]  F. Blattner,et al.  Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. , 1992, Science.

[28]  R J Roberts,et al.  Finding errors in DNA sequences. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[30]  L. R. Finch,et al.  Mycoplasmas: molecular biology and pathogenesis. , 1992 .

[31]  D J States,et al.  Molecular sequence accuracy and the analysis of protein coding regions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Heinemann Genetics of gene transfer between species. , 1991, Trends in genetics : TIG.

[33]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[34]  M. Miyata,et al.  Physical mapping of the Mycoplasma capricolum genome. , 1991, FEMS microbiology letters.

[35]  L. R. Finch,et al.  A physical map for Mycoplasma capricolum Cal. kid with loci for all known tRNA species. , 1991, Nucleic Acids Research.

[36]  C. Sander,et al.  Database of homology‐derived protein structures and the structural meaning of sequence alignment , 1991, Proteins.

[37]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank. , 1991, Nucleic acids research.

[38]  P. Gillevet Chemiluminescent multiplex DNA sequencing , 1990, Nature.

[39]  R. Herrmann,et al.  Analysis of three different repeated DNA elements present in the P1 operon of Mycoplasma pneumoniae: size, number and distribution on the genome. , 1990, Nucleic acids research.

[40]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[41]  C. Lange,et al.  Pulse-field electrophoresis indicates full-length Mycoplasma chromosomes range widely in size. , 1990, Nucleic acids research.

[42]  E. Koonin,et al.  Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. , 1990, Journal of molecular biology.

[43]  L. R. Finch,et al.  Human ureaplasmas show diverse genome sizes by pulsed-field electrophoresis. , 1990, Nucleic acids research.

[44]  J. Hoch,et al.  Characterization of the spoIVB and recN loci of Bacillus subtilis , 1990, Journal of bacteriology.

[45]  K. Shirahige,et al.  Molecular cloning, genetic characterization and DNA sequence analysis of the recM region of Bacillus subtilis. , 1990, Nucleic acids research.

[46]  J. V. Van Etten,et al.  A phylogenetic analysis of the mycoplasmas: basis for their classification , 1989, Journal of bacteriology.

[47]  W. Gilbert,et al.  Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. K. Poddar,et al.  Determination of microbial genome sizes by two-dimensional denaturing gradient gel electrophoresis. , 1989, Nucleic acids research.

[49]  J. Maniloff Anomalous values of Mycoplasma genomes sizes determined by pulse-field gel electrophoresis. , 1989, Nucleic acids research.

[50]  R. Herrmann,et al.  Repetitive DNA sequences in Mycoplasma pneumoniae. , 1988, Nucleic acids research.

[51]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[53]  S. Osawa,et al.  The genome of Mycoplasma capricolum. , 1987, Progress in nucleic acid research and molecular biology.

[54]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.