Hadamard Matrices, Baumert-Hall Units, Four-Symbol Sequences, Pulse Compression, and Surface Wave Encodings

Abstract If a Williamson matrix of order 4w exists and a special type of design, a set of Baumert-Hall units of order 4t, exists, then there exists a Hadamard matrix of order 4tw. A number of special Baumert-Hall sets of units, including an infinite class, are constructed here; these give the densest known classes of Hadamard matrices. The constructions relate to various topics such as pulse compression and image encodings.

[1]  Chin Chong Tseng Signal Multiplexing in Surface-Wave Delay Lines Using Orthogonal Pairs of Golay's Complementary Sequences , 1971, IEEE Transactions on Sonics and Ultrasonics.

[2]  Richard J. Turyn An Infinite Class of Williamson Matrices , 1972, J. Comb. Theory, Ser. A.

[3]  Richard J. Turyn,et al.  Ambiguity functions of complementary sequences (Corresp.) , 1963, IEEE Trans. Inf. Theory.

[4]  J. Williamson Hadamard’s determinant theorem and the sum of four squares , 1944 .

[5]  S. Jauregui Complementary sequences of length 26 (Corresp.) , 1962, IRE Trans. Inf. Theory.

[6]  H. Whitehouse,et al.  Linear Signal Processing and Ultrasonic Transversal Filters , 1969 .

[7]  Mitsutoshi Hatori,et al.  Even-shift orthogonal sequences , 1969, IEEE Trans. Inf. Theory.

[8]  Joseph B. Kruskal Golay's complementary series (Corresp.) , 1961, IRE Trans. Inf. Theory.

[9]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[10]  Morris Plotkin Decomposition of Hadamard Matrices , 1972, J. Comb. Theory, Ser. A.

[11]  George R. Welti,et al.  Quaternary codes for pulsed radar , 1960, IRE Trans. Inf. Theory.

[12]  Jennifer Seberry,et al.  Complex Hadamard matrices , 1973 .

[13]  J. J. Seidel,et al.  A skew Hadamard matrix of order 36 , 1970, Journal of the Australian Mathematical Society.

[14]  M. Golay Static multislit spectrometry and its application to the panoramic display of infrared spectra. , 1951, Journal of the Optical Society of America.

[15]  Marshall Hall,et al.  A new construction for Hadamard matrices , 1965 .