Higher-order time integration through smooth mesh deformation for 3D fluid-structure interaction simulations

In this paper, we present a higher-order accurate in time, partitioned integration scheme (IMEX) for fluid-structure interaction. The scheme is based on a combination of an implicit, L-stable, multi-stage Runge-Kutta scheme and an explicit Runge-Kutta scheme. Fluid and structure dynamics are integrated using the implicit scheme and only the pressure loads acting on the structure are integrated explicitly. For an academic problem we show that mesh optimization functions, which are often necessary in standard mesh deformation algorithms, can have a detrimental effect on the temporal order and accuracy. We use a radial basis function (RBF) interpolation with a thin plate spline to create a smooth displacement field for the whole fluid domain, which does not affect the order of the IMEX time integration scheme. For reasonable accuracies, the IMEX schemes outperform a second-order staggered scheme by a factor of 2-3. As an example for a three-dimensional, real-world problem, a simulation of a transonic wing flutter case, the AGARD 445.6 wing, is performed. For this test case, a clear third-order time accuracy is observed for IMEX3.

[1]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[2]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[3]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[4]  Guru P. Guruswamy,et al.  A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications , 2001 .

[5]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[6]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[7]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[8]  Carlos E. S. Cesnik,et al.  EVALUATION OF SOME DATA TRANSFER ALGORITHMS FOR NONCONTIGUOUS MESHES , 2000 .

[9]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[10]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[11]  David Martineau,et al.  A Mesh Movement Algorithm for High Quality Generalised Meshes , 2004 .

[12]  Hester Bijl,et al.  Validation of adaptive unstructured hexahedral mesh computations of flow around a wind turbine airfoil , 2005 .

[13]  Hester Bijl,et al.  Review of coupling methods for non-matching meshes , 2007 .

[14]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[15]  Hester Bijl,et al.  Implicit and Explicit Higher-Order Time Integration Schemes for Fluid-Structure Interaction Computations , 2006 .

[16]  E. Carson Yates,et al.  AGARD standard aeroelastic configurations for dynamic response , 1989 .

[17]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[18]  Charbel Farhat,et al.  Aeroelastic Dynamic Analysis of a Full F-16 Configuration for Various Flight Conditions , 2003 .

[19]  E. Carson Yates,et al.  AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-wing 445.6 , 1987 .

[20]  Brian T. Helenbrook,et al.  Mesh deformation using the biharmonic operator , 2003 .

[21]  Dominique Chapelle,et al.  Software - OpenFEM : a Finite Element Toolbox for Matlab and Scilab , 2006 .

[22]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[23]  H. Bijl,et al.  Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations , 2005 .

[24]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[25]  A. H. van Zuijlen,et al.  Fluid-structure interaction simulations: Efficient higher order time integration of partitioned systems , 2006 .

[26]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[27]  Charbel Farhat,et al.  CFD on moving grids: from theory to realistic flutter, maneuvering, and multidisciplinary optimization , 2005 .

[28]  M. Delanaye,et al.  Untangling and optimization of unstructured hexahedral meshes , 2003 .

[29]  John Batina,et al.  Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis , 1989 .

[30]  Hester Bijl,et al.  Comparison of the conservative and a consistent approach for the coupling of non-matching meshes , 2006 .

[31]  Charbel Farhat,et al.  Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes , 1999 .

[32]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[33]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[34]  Dimitri J. Mavriplis,et al.  Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes , 2006, J. Comput. Phys..

[35]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[36]  Charbel Farhat,et al.  On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .

[37]  Hester Bijl,et al.  Fourth-Order Runge–Kutta Schemes for Fluid Mechanics Applications , 2005, J. Sci. Comput..

[38]  Miguel R. Visbal,et al.  Computation of the aeroelastic response of a flexible delta wing at high angles of attack , 2004 .

[39]  Hester Bijl,et al.  Implicit and Explicit Higher Order Time Integration Schemes for Fluid-Structure Interaction Computations , 2004, International Conference on Computational Science.

[40]  H. Wendland,et al.  Multivariate interpolation for fluid-structure-interaction problems using radial basis functions , 2001 .

[41]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[42]  Michael B. Giles,et al.  STABILITY AND ACCURACY OF NUMERICAL BOUNDARY CONDITIONS IN AEROELASTIC ANALYSIS , 1997 .

[43]  Jan Vierendeels,et al.  Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion , 2005 .