Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain

SUMMARY We perform the full elastic waveform inversion in the frequency domain in a 2-D geometry. This method allows imaging of two physical seismic parameters, using vertical and horizontal field components. The forward problem is discretized using finite difference, allowing to simulate the full elastic wavefield propagation. Moreover, it is solved in the frequency domain, a fast approach for multisource and multireceiver acquisition. The non-linear inversion is based on a pre-conditioned gradient method, where Born and Rytov formulations are used to compute Frechet derivatives. Parameter perturbations linearly depend on fields perturbations in the Born kernel, and on the generalized complex phases of fields in the Rytov kernel, giving different Frechet derivatives. The gradient is pre-conditioned with the diagonal part of the inverse Hessian matrix, allowing to better estimate the stepping in the optimization direction. Non-linearity is taken into account by updating parameters at each iteration and proceeding from low to high frequencies. The latter allows as well to progressively introduce smaller wavelengths in parameter images. On a very simple synthetic example, we examine the way the inversion determines the Vp (P-wave velocity) and Vs (S-wave velocity) images. We highlight that, with a transmission acquisition, final parameter images weakly depend on the chosen formulation to compute Frechet derivatives and on the inverted parameters choice. Of course, convergence strongly depends on the medium wavenumber illumination which is related somehow to the acquisition geometry. With a reflection acquisition, the Born formulation allows to better recover scatterers. Moreover, the medium anomalies are not well reconstructed when surface waves propagate in the medium. This may be due to the evanescent nature of surface waves. By selecting first body waves and then surface waves, we improve the convergence and properly reconstruct anomalies. This shows us that preparation of the seismic data before the inversion is as critical as the initial model selection.

[1]  B. Kennett,et al.  The Australian continental upper mantle: Structure and deformation inferred from surface waves , 2000 .

[2]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[3]  B. Kennett,et al.  Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion , 2000 .

[4]  Marc Molinari,et al.  Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction. , 2002, Physiological measurement.

[5]  A. Devaney Inverse-scattering theory within the Rytov approximation. , 1981, Optics letters.

[6]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[7]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[8]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[9]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[10]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[11]  R. Shipp,et al.  Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data , 2002 .

[12]  R. G. Pratt,et al.  Two‐dimensional velocity models from wide‐angle seismic data by wavefield inversion , 1996 .

[13]  J. Virieux,et al.  Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion , 2004 .

[14]  R. Snieder,et al.  The Fresnel volume and transmitted waves , 2004 .

[15]  M. Nafi Toksöz,et al.  Discontinuous-Grid Finite-Difference Seismic Modeling Including Surface Topography , 2001 .

[16]  Bernard A. Chouet,et al.  A free-surface boundary condition for including 3D topography in the finite-difference method , 1997, Bulletin of the Seismological Society of America.

[17]  Marta Woodward,et al.  Wave-equation tomography , 1992 .

[18]  J. Rector,et al.  Imaging shallow objects and heterogeneities with scattered guided waves , 2000 .

[19]  Stéphane Operto,et al.  3D ray+Born migration/inversion—Part 1: Theory , 2003 .

[20]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[21]  J. Virieux,et al.  Asymptotic theory for imaging the attenuation factor Q , 1998 .

[22]  F. Dahlen,et al.  Fréchet kernels for body-wave amplitudes , 2001 .

[23]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[24]  W. Beydoun,et al.  Elastic Ray‐Born L2‐Migration/Inversion , 1989 .

[25]  S. Operto,et al.  Numerical Modeling of Surface Waves Over Shallow Cavities , 2005 .

[26]  John A. Scales,et al.  Resonant Ultrasound Spectroscopy: theory and application , 2002 .

[27]  Erik H. Saenger,et al.  Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid , 2004 .

[28]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[29]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[30]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[31]  R. Pratt,et al.  Reflection waveform inversion using local descent methods: Estimating attenuation and velocity over a gas-sand deposit , 2001 .

[32]  Michel Dietrich,et al.  Nonlinear waveform inversion of plane-wave seismograms in stratified elastic media , 1991 .

[33]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[34]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[35]  C. D. Riyanti,et al.  Imaging scattered seismic surface waves , 2004 .

[36]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[37]  Albert Tarantola,et al.  Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .

[38]  C. Chapman Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .

[39]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[40]  R. Pratt,et al.  The application of diffraction tomography to cross-hole seismic data , 1988 .

[41]  Jean Virieux,et al.  Two-dimensional asymptotic iterative elastic inversion , 1992 .

[42]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[43]  R. Wu,et al.  Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators , 2003 .

[44]  Gerard T. Schuster,et al.  Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .

[45]  J. Sheng High resolution seismic tomography with the generalized Radon transform and early arrival waveform inversion , 2004 .

[46]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[47]  B. Kennett,et al.  Joint bulk-sound and shear tomography for Western Pacific subduction zones , 2003 .

[48]  Nolet,et al.  Seismic Tomography || Seismic wave propagation and seismic tomography , 1987 .

[49]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[50]  P. Lailly,et al.  Pre-stack inversion of a 1-D medium , 1986, Proceedings of the IEEE.

[51]  R. Snieder 3-D linearized scattering of surface waves and a formalism for surface wave holography , 1986 .

[52]  Robert W. Clayton,et al.  A Born-WKBJ inversion method for acoustic reflection data , 1981 .

[53]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[54]  Jean Virieux,et al.  Seismic imaging of complex structures by non-linear traveltime inversion of dense wide-angle data: application to a thrust belt , 2002 .

[55]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[56]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[57]  Jean Virieux,et al.  Quantitative imaging of complex structures from dense wide‐aperture seismic data by multiscale traveltime and waveform inversions: a case study , 2004 .

[58]  Changsoo Shin,et al.  Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion , 2001 .

[59]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[60]  Joseph B. Keller,et al.  Accuracy and Validity of the Born and Rytov Approximations , 1969 .

[61]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[62]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[63]  J. Virieux,et al.  Iterative asymptotic inversion in the acoustic approximation , 1992 .

[64]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[65]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[66]  Wafik B. Beydoun,et al.  First Born and Rytov approximations: Modeling and inversion conditions in a canonical example , 1988 .

[67]  Mark Noble,et al.  Robust elastic nonlinear waveform inversion: Application to real data , 1990 .

[68]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .