Determination of β -decay ground state feeding of nuclei of importance for reactor applications

In $\beta$-decay studies the determination of the decay probability to the ground state of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed $\gamma$-ray emission. In this work we revisit the $4\pi\gamma-\beta$ method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the $\beta$-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large ground state branches. The method is relevant for nuclear structure studies as well. Pertinent formulae are revised and extended to the special case of $\beta$-delayed neutron emitters, and the robustness of the method is demonstrated with synthetic data. We apply it to a number of measured decays that serve as test cases and discuss the features of the method. Finally, we obtain ground state feeding intensities with reduced uncertainty for four relevant decays that will allow future improvements in antineutrino spectrum and decay heat calculations using the summation method.

[1]  J. Wilson,et al.  Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95 , 2019, Physical Review C.

[2]  France,et al.  Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes. , 2019, Physical review letters.

[3]  J. Wilson,et al.  Total absorption γ -ray spectroscopy of niobium isomers , 2019, Physical Review C.

[4]  J. Wilson,et al.  Large Impact of the Decay of Niobium Isomers on the Reactor ν[over ¯]_{e} Summation Calculations. , 2019, Physical review letters.

[5]  J. Wilson,et al.  Characterization and performance of the DTAS detector , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[6]  E. Mccutchan,et al.  Revealing fine structure in the antineutrino spectra from a nuclear reactor , 2017, Physical Review C.

[7]  R. Grzywacz,et al.  Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν[over ¯]_{e} flux calculation. , 2017, Physical review letters.

[8]  J. Rissanen,et al.  Total absorption spectroscopy study of the beta decay of Br-86 and Rb-91 , 2017, 1704.01915.

[9]  J. Wilson,et al.  Study of the β decay of fission products with the DTAS detector , 2017 .

[10]  J. Wilson,et al.  Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons , 2016, 1611.07346.

[11]  R. Grzywacz,et al.  Modular total absorption spectrometer , 2016 .

[12]  J. Wilson,et al.  First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility , 2016 .

[13]  G F Cao,et al.  Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay , 2014, Physical review letters.

[14]  J. Strachan,et al.  A decay total absorption spectrometer for DESPEC at FAIR , 2015 .

[15]  W. D. Kulp,et al.  Nuclear Data Sheets for A = 87 , 2015 .

[16]  T. Kawano,et al.  Possible origins and implications of the shoulder in reactor neutrino spectra , 2015, 1506.00583.

[17]  M. B. Gómez-Hornillos,et al.  Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape. , 2015, Physical review letters.

[18]  Chao Zhang,et al.  Neutrino oscillation studies with reactors , 2015, Nature Communications.

[19]  E. Mccutchan,et al.  Nuclear structure insights into reactor antineutrino spectra , 2015 .

[20]  Iain Moore,et al.  Towards commissioning the new IGISOL-4 facility , 2013 .

[21]  A. Krasznahorkay,et al.  Total absorption study of the beta decay of 102,104,105Tc , 2013 .

[22]  Xing Xu,et al.  The AME2016 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[23]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[24]  M. Bunce,et al.  Beta decay studies of neutron rich nuclei using total absorption gamma-ray spectroscopy and delayed neutron measurements , 2011 .

[25]  P. Huber On the determination of anti-neutrino spectra from nuclear reactors , 2011 .

[26]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[27]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[28]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[29]  J. Rissanen,et al.  Reactor decay heat in 239Pu: solving the γ discrepancy in the 4-3000-s cooling period. , 2010, Physical review letters.

[30]  S. Gorp,et al.  A GEANT4 Monte-Carlo simulation code for precision β spectroscopy , 2009, 0907.4594.

[31]  D. Cano-Ott,et al.  The influence of the unknown de-excitation pattern in the analysis of β-decay total absorption spectra , 2007 .

[32]  D. Cano-Ott,et al.  Algorithms for the analysis of β-decay total absorption spectra , 2007 .

[33]  Y. Volkov,et al.  Absolute branching intensities in the decay ofRb92toSr92 , 2006 .

[34]  L. Caballero,et al.  Beta decay studies with the total absorption technique: past, present and future , 2005 .

[35]  A. Sonzogni,et al.  Nuclear Data Sheets for A = 88 , 2005 .

[36]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[37]  C. Baglin Regular ArticleNuclear Data Sheets for A = 92☆ , 2000 .

[38]  A. Gadea,et al.  Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape , 1999 .

[39]  M. Kárný,et al.  Monte Carlo simulation of the response of a large NaI(Tl)total absorption spectrometer for β-decay studies , 1999 .

[40]  M. Kárný,et al.  Coupling a total absorption spectrometer to the GSI on-line mass separator , 1997 .

[41]  K. D. Watts,et al.  Ground-state β−-branching intensities of several fission-product isotopes measured using a total absorption γ-ray spectrometer , 1996 .

[42]  K. D. Watts,et al.  Measurement of ground-state β−-branching intensities of deformed rare-earth nuclides using a total absorption γ-ray spectrometer , 1995 .

[43]  K. D. Watts,et al.  Use of a total absorption gamma-ray spectrometer to measure ground-state β−-branching intensities , 1992 .

[44]  K. D. Watts,et al.  Total absorption gamma-ray spectrometer for measurement of beta-decay intensity distributions for fission product radionuclides , 1992 .

[45]  J. K. Dickens,et al.  Yields of fission products produced by thermal-neutron fission of 243Cm. , 1986, Physical review. C, Nuclear physics.

[46]  D. Frenne,et al.  Nuclear data sheets for A = 110 , 1983 .

[47]  D. Frenne Nuclear data sheets for A = 102 , 1982 .

[48]  K. Schreckenbach,et al.  Absolute measurement of the beta spectrum from 235U fission as a basis for reactor antineutrino experiments , 1981 .

[49]  S. Kageyama,et al.  Decay Scheme of 50 sec 103Tc , 1979 .

[50]  J. Hardy,et al.  The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes , 1977 .

[51]  D. Kocher Nuclear Data Sheets for A = 103 , 1974 .

[52]  D. Kocher,et al.  Nuclear data sheets for A = 92 , 1972 .

[53]  P. Hansen,et al.  Strength-function phenomena in electron-capture beta decay , 1970 .

[54]  J. F. Perkins,et al.  Inverse Beta Decay and the Two-Component Neutrino , 1958 .