Synaptotagmin Interaction with the Syntaxin/SNAP-25 Dimer Is Mediated by an Evolutionarily Conserved Motif and Is Sensitive to Inositol Hexakisphosphate*

Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction. Inositol hexakisphosphate modulates synaptotagmin coupling to the syntaxin/SNAP-25 dimer, which is mirrored by changes in chromaffin cell exocytosis. Our results shed new light on the functional importance of the conserved polybasic synaptotagmin motif, suggesting that synaptotagmin interacts with the t-SNARE dimer to up-regulate the probability of SNARE-mediated membrane fusion.

[1]  J. Molgó,et al.  Synaptotagmin II immunoreactivity in normal and botulinum type-A treated mouse motor nerve terminals , 2006, Pflügers Archiv.

[2]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[3]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[4]  H. Bellen,et al.  Synaptotagmin I, a Ca2+ sensor for neurotransmitter release , 2003, Trends in Neurosciences.

[5]  Alan Morgan,et al.  Secretory granule exocytosis. , 2003, Physiological reviews.

[6]  B. Davletov,et al.  Mechanism of Calcium-independent Synaptotagmin Binding to Target SNAREs* , 2003, The Journal of Biological Chemistry.

[7]  E. Chapman,et al.  Visualization of synaptotagmin I oligomers assembled onto lipid monolayers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Söllner,et al.  Regulated exocytosis and SNARE function (Review) , 2003, Molecular membrane biology.

[9]  G. Schiavo,et al.  Glycerotoxin from Glycera convoluta stimulates neurosecretion by up‐regulating N‐type Ca2+ channel activity , 2002, The EMBO journal.

[10]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[11]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[12]  R. Burgoyne,et al.  Complexin Regulates the Closure of the Fusion Pore during Regulated Vesicle Exocytosis* , 2002, The Journal of Biological Chemistry.

[13]  T. Südhof Synaptotagmins: Why So Many?* , 2002, The Journal of Biological Chemistry.

[14]  K. Mikoshiba,et al.  Synaptotagmin IX Regulates Ca2+-dependent Secretion in PC12 Cells* , 2002, The Journal of Biological Chemistry.

[15]  B. Davletov,et al.  Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion , 2002, Nature.

[16]  V. Subramaniam,et al.  SNARE assembly and disassembly exhibit a pronounced hysteresis , 2002, Nature Structural Biology.

[17]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[18]  G. Schiavo,et al.  Phosphoinositides as Key Regulators of Synaptic Function , 2001, Neuron.

[19]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Augustine How does calcium trigger neurotransmitter release? , 2001, Current Opinion in Neurobiology.

[21]  T. Südhof,et al.  The C2B domain of synaptotagmin I is a Ca2+-binding module. , 2001, Biochemistry.

[22]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[23]  J E Moreira,et al.  Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E. Chapman,et al.  Membrane-embedded Synaptotagmin Penetrates cis ortrans Target Membranes and Clusters via a Novel Mechanism* , 2000, The Journal of Biological Chemistry.

[25]  M. Seagar,et al.  Synaptotagmins in membrane traffic: which vesicles do the tagmins tag? , 2000, Biochimie.

[26]  A. Brunger,et al.  Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III , 1999, The Journal of cell biology.

[27]  E. Chapman,et al.  Delineation of the Oligomerization, AP-2 Binding, and Synprint Binding Region of the C2B Domain of Synaptotagmin* , 1998, The Journal of Biological Chemistry.

[28]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[29]  K. Mikoshiba,et al.  Functional diversity of C2 domains of synaptotagmin family , 1995, Neuroscience Research.

[30]  J. Rothman,et al.  Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Robert S Zucker,et al.  Mechanisms Determining the Time Course of Secretion in Neuroendocrine Cells , 1996, Neuron.

[32]  Thomas C. Südhof,et al.  Complexins: Cytosolic proteins that regulate SNAP receptor function , 1995, Cell.

[33]  J. Molgó,et al.  Mouse motor nerve terminal immunoreactivity to synaptotagmin II during sustained quantal transmitter release , 1995, Brain Research.

[34]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[35]  R. Llinás,et al.  The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: a squid giant synapse study. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E Neher,et al.  Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[38]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[39]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[40]  G. Augustine,et al.  Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis , 1993, Nature.

[41]  M. Takahashi,et al.  HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. , 1992, The Journal of biological chemistry.

[42]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[43]  T. Südhof,et al.  Synaptotagmin II. A novel differentially distributed form of synaptotagmin. , 1991, The Journal of biological chemistry.

[44]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[45]  S. J. Smith,et al.  Calcium action in synaptic transmitter release. , 1987, Annual review of neuroscience.

[46]  B. Katz,et al.  The effect of calcium on acetylcholine release from motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.