Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules

Efficiencies of solar cells based on organometallic halide perovskite absorber material have dramatically increased over the past few years. Most of efficiencies reported so far have, however, been obtained on solar cells with very small lab-scale area of less than 0.3 cm2. Only a handful of studies addressed the performances of minimodules based on perovskite, and all of them showed relatively large dead areas between the solar cell segments. In this study, we used laser-scribing techniques to pattern the module segment, reduce the dead area, and optimize the aperture area efficiency. The fraction of the dead area in the module is less than 16%, which proves that the laser-scribing technology can be adopted for monolithic serial interconnected perovskite modules and paves the way to improving module efficiency.

[1]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[2]  K. Catchpole,et al.  Optics and Light Trapping for Tandem Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.

[3]  J. Müller,et al.  Texture Etched ZnO:Al for Silicon Thin Film Solar Cells , 2008 .

[4]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[5]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[6]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[7]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[8]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[9]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[10]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[11]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[12]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[13]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[14]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[15]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[16]  Heather Booth,et al.  Laser Processing in Industrial Solar Module Manufacturing , 2010 .

[17]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[18]  Helmut Stiebig,et al.  High speed laser processing for monolithical series connection of silicon thin‐film modules , 2008 .

[19]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[20]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[21]  Yunlong Guo,et al.  Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer , 2014 .

[22]  N. Park,et al.  Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , 2012, Nanoscale Research Letters.

[23]  Christophe Ballif,et al.  Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells , 2014, IEEE Journal of Photovoltaics.

[24]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[25]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[26]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[27]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[28]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[29]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.