A solid-state electrolyte incorporating Li6.25Al0.25La3Zr2O12 into an ethylene oxide-based network for use in lithium metal batteries

[1]  Longtao Ma,et al.  The Gel-State Electrolytes in Zinc-Ion Batteries , 2022, Batteries.

[2]  Longtao Ma,et al.  Solid Electrolyte Interface in Zn-Based Battery Systems , 2022, Nano-Micro Letters.

[3]  M. Martínez-Ibañez,et al.  Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO , 2022, Inorganics.

[4]  Yue Ma,et al.  Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte , 2021, Journal of Energy Chemistry.

[5]  Eun-Gyoung Song,et al.  Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer Network Structure , 2021, Macromolecular Research.

[6]  H. Wilkening,et al.  The natural critical current density limit for Li7La3Zr2O12 garnets , 2020, Journal of Materials Chemistry A.

[7]  Soo‐Hyoung Lee,et al.  Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage , 2020 .

[8]  Byoungwoo Kang,et al.  Research Progresses of Garnet-Type Solid Electrolytes for Developing All-Solid-State Li Batteries , 2020, Frontiers in Chemistry.

[9]  Chaohe Xu,et al.  LLZO@EmimFSI@PEO derived hybrid solid electrolyte for high-energy lithium metal batteries , 2020, Materials Technology.

[10]  Kongjun Zhu,et al.  A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries , 2019, Ionics.

[11]  H. Fan,et al.  Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte , 2019, Electrochimica Acta.

[12]  Min Young Kim,et al.  Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder , 2019, Journal of Industrial and Engineering Chemistry.

[13]  Meng-Yang Gao,et al.  A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery , 2018, Journal of Materials Science.

[14]  A. Aguadero,et al.  Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes , 2018 .

[15]  C. Zhi,et al.  Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes , 2018 .

[16]  R. Murugan,et al.  Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery , 2018, Journal of Solid State Electrochemistry.

[17]  Fan Li,et al.  A durable and safe solid-state lithium battery with a hybrid electrolyte membrane , 2018 .

[18]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[19]  Jin Zheng,et al.  New Insights into the Compositional Dependence of Li-Ion Transport in Polymer-Ceramic Composite Electrolytes. , 2018, ACS applied materials & interfaces.

[20]  Fei Chen,et al.  Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries , 2017 .

[21]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[22]  Donald J. Siegel,et al.  Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12 , 2017 .

[23]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[24]  Ming Liu,et al.  Novel gel polymer electrolyte for high- performance lithium-sulfur batteries , 2016 .

[25]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[26]  M. Mackay,et al.  Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries , 2012 .

[27]  H. Fan,et al.  Hydrothermal synthesis of single crystal MoO3 nanobelts and their electrochemical properties as cathode electrode materials for rechargeable lithium batteries , 2012 .

[28]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[29]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[30]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[31]  Venkataraman Thangadurai,et al.  Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 , 2006 .

[32]  B. Hwang,et al.  Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries , 2005 .

[33]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[34]  Tsutomu Minami,et al.  Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses , 2003 .

[35]  B. Scrosati,et al.  Poly(ethylene oxide)-Based, Nanocomposite Electrolytes as Improved Separators for Rechargeable Lithium Polymer Batteries The Li / LiMn 3 O 6 Case , 2002 .

[36]  Bruno Scrosati,et al.  Impedance Spectroscopy Study of PEO‐Based Nanocomposite Polymer Electrolytes , 2000 .

[37]  R. Subramani,et al.  High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries , 2019, Journal of Materials Chemistry A.