Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces

We deal with the question of global and local asymptotic stabilities, as time tends to infinity, of solutions of dissipative anisotropic Kirchhoff systems, governed by the p(x)-Laplacian operator, in the framework of the variable exponent Sobolev spaces. Concrete applications are presented in special subcases of the external force f and the distributed damping Q involved in the systems.

[1]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[2]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[3]  Decay rate of solutions of a wave eqution with damping and external force , 2001 .

[4]  Dun Zhao,et al.  On the Spaces L and W , 2001 .

[5]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[6]  Vicentiu D. Rădulescu,et al.  Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent , 2008 .

[7]  Peter Hästö,et al.  The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values , 2006 .

[8]  Precise damping conditions for global asymptotic stability for nonlinear second order systems , 1993 .

[9]  Ganesh C. Gorain,et al.  Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation , 2006, Appl. Math. Comput..

[10]  P. Pucci,et al.  Asymptotic stability for nonlinear Kirchhoff systems , 2009 .

[11]  L. C. Barbosa,et al.  Raman, hyperraman, hyper-Rayleigh, two-photon excited luminescence and morphology-dependent-modes in a single optical tweezers system , 2005 .

[12]  Qihu Zhang,et al.  Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .

[13]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[14]  Giuseppina Autuori,et al.  Asymptotic stability for anisotropic Kirchhoff systems , 2009 .

[15]  Chi Wang,et al.  Engineering with rubber - how to design rubber components - 2nd edition , 1992 .

[16]  P. Radu Weak solutions to the Cauchy problem of a semilinear wave equation with damping and source terms , 2005, Advances in Differential Equations.

[17]  Y. Shibata,et al.  On global solvability of non‐linear viscoelastic equations in the analytic category , 1994 .

[18]  P. Hästö,et al.  Sobolev inequalities with variable exponent attaining the values $1$ and $n$ , 2008 .

[19]  M. Destrade,et al.  Finite amplitude elastic waves propagating in compressible solids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Mitsuhiro Nakao,et al.  An attractor for a nonlinear dissipative wave equation of Kirchhoff type , 2009 .

[21]  Mihai Mihailescu,et al.  On a nonhomogeneous quasilinear eigenvalue problem in sobolev spaces with variable exponent , 2006, math/0606156.

[22]  Mihai Mihailescu,et al.  A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: An Orlicz–Sobolev space setting , 2006, math/0606157.

[24]  J. Serrin,et al.  Asymptotic stability for nonautonomous dissipative wave systems , 1996 .

[25]  P. Hst On the density of continuous functions in variable exponent Sobolev space , 2007 .

[26]  Vicentiu D. Rădulescu,et al.  Nonhomogeneous boundary value problems in anisotropic Sobolev spaces , 2007 .

[27]  Sergey Zelik,et al.  Smooth attractors for strongly damped wave equations , 2006 .

[28]  J. Serrin,et al.  Local asymptotic stability for dissipative wave systems , 1998 .

[29]  Lars Diening,et al.  Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .