Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces
暂无分享,去创建一个
[1] Jiří Rákosník,et al. On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .
[2] Zhikov. On Lavrentiev's Phenomenon. , 1995 .
[3] Decay rate of solutions of a wave eqution with damping and external force , 2001 .
[4] Dun Zhao,et al. On the Spaces L and W , 2001 .
[5] Jiří Rákosník,et al. Sobolev embeddings with variable exponent , 2000 .
[6] Vicentiu D. Rădulescu,et al. Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent , 2008 .
[7] Peter Hästö,et al. The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values , 2006 .
[8] Precise damping conditions for global asymptotic stability for nonlinear second order systems , 1993 .
[9] Ganesh C. Gorain,et al. Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation , 2006, Appl. Math. Comput..
[10] P. Pucci,et al. Asymptotic stability for nonlinear Kirchhoff systems , 2009 .
[11] L. C. Barbosa,et al. Raman, hyperraman, hyper-Rayleigh, two-photon excited luminescence and morphology-dependent-modes in a single optical tweezers system , 2005 .
[12] Qihu Zhang,et al. Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .
[13] Xianling Fan,et al. On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .
[14] Giuseppina Autuori,et al. Asymptotic stability for anisotropic Kirchhoff systems , 2009 .
[15] Chi Wang,et al. Engineering with rubber - how to design rubber components - 2nd edition , 1992 .
[16] P. Radu. Weak solutions to the Cauchy problem of a semilinear wave equation with damping and source terms , 2005, Advances in Differential Equations.
[17] Y. Shibata,et al. On global solvability of non‐linear viscoelastic equations in the analytic category , 1994 .
[18] P. Hästö,et al. Sobolev inequalities with variable exponent attaining the values $1$ and $n$ , 2008 .
[19] M. Destrade,et al. Finite amplitude elastic waves propagating in compressible solids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Mitsuhiro Nakao,et al. An attractor for a nonlinear dissipative wave equation of Kirchhoff type , 2009 .
[21] Mihai Mihailescu,et al. On a nonhomogeneous quasilinear eigenvalue problem in sobolev spaces with variable exponent , 2006, math/0606156.
[22] Mihai Mihailescu,et al. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[23] Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: An Orlicz–Sobolev space setting , 2006, math/0606157.
[24] J. Serrin,et al. Asymptotic stability for nonautonomous dissipative wave systems , 1996 .
[25] P. Hst. On the density of continuous functions in variable exponent Sobolev space , 2007 .
[26] Vicentiu D. Rădulescu,et al. Nonhomogeneous boundary value problems in anisotropic Sobolev spaces , 2007 .
[27] Sergey Zelik,et al. Smooth attractors for strongly damped wave equations , 2006 .
[28] J. Serrin,et al. Local asymptotic stability for dissipative wave systems , 1998 .
[29] Lars Diening,et al. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .