MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer

[1]  Jun O. Liu,et al.  Identification of an SH3-binding motif in a new class of methionine aminopeptidases from Mycobacterium tuberculosis suggests a mode of interaction with the ribosome. , 2005, Biochemistry.

[2]  A. Serero,et al.  An Unusual Peptide Deformylase Features in the Human Mitochondrial N-terminal Methionine Excision Pathway* , 2003, Journal of Biological Chemistry.

[3]  Sunkyu Kim,et al.  Proteomics-based Target Identification , 2003, Journal of Biological Chemistry.

[4]  O. Vallon,et al.  Control of protein life‐span by N‐terminal methionine excision , 2003, The EMBO journal.

[5]  R. Bradshaw,et al.  Methionine aminopeptidases and angiogenesis. , 2002, Essays in biochemistry.

[6]  H. Satoh,et al.  Methionine Aminopeptidase 2 Is a New Target for the Metastasis-associated Protein, S100A4* , 2002, The Journal of Biological Chemistry.

[7]  M. Fukayama,et al.  High Expression of Methionine Aminopeptidase Type 2 in Germinal Center B Cells and Their Neoplastic Counterparts , 2002, Laboratory Investigation.

[8]  Joseph A. Vetro,et al.  The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae. , 2002, Archives of biochemistry and biophysics.

[9]  A. Serero,et al.  Distinctive features of the two classes of eukaryotic peptide deformylases. , 2001, Journal of molecular biology.

[10]  T. Meinnel,et al.  Organellar peptide deformylases: universality of the N-terminal methionine cleavage mechanism. , 2001, Trends in plant science.

[11]  S. Zabludoff,et al.  Synthesis and antitumor activity of ester-modified analogues of bengamide B. , 2001, Journal of medicinal chemistry.

[12]  L. Strizzi,et al.  Methionine aminopeptidase-2 regulates human mesothelioma cell survival: role of Bcl-2 expression and telomerase activity. , 2001, The American journal of pathology.

[13]  A. Serero,et al.  Identification of eukaryotic peptide deformylases reveals universality of N‐terminal protein processing mechanisms , 2000, The EMBO journal.

[14]  B. Matthews,et al.  Structure and function of the methionine aminopeptidases. , 2000, Biochimica et biophysica acta.

[15]  U. Gaul,et al.  A methionine aminopeptidase and putative regulator of translation initiation is required for cell growth and patterning in Drosophila , 1999, Mechanisms of Development.

[16]  W. Bornmann,et al.  The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Varshavsky,et al.  The N-end rule: functions, mysteries, uses. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  X Li,et al.  Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R A Bradshaw,et al.  Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Chang,et al.  Methionine aminopeptidase gene of Escherichia coli is essential for cell growth , 1989, Journal of bacteriology.

[21]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[22]  S. Arfin,et al.  Cotranslational processing and protein turnover in eukaryotic cells. , 1988, Biochemistry.

[23]  P. Wingfield,et al.  N-terminal methionine-specific peptidase in Salmonella typhimurium. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Myambo,et al.  Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure , 1987, Journal of bacteriology.

[25]  D. Ludovici,et al.  Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2) fail to inhibit endothelial cell proliferation or formation of microvessels from rat aortic rings in vitro , 2004, Angiogenesis.

[26]  J. Thompson,et al.  Using CLUSTAL for multiple sequence alignments. , 1996, Methods in enzymology.

[27]  J. Gordon,et al.  Genetic and biochemical studies of protein N-myristoylation. , 1994, Annual review of biochemistry.

[28]  Y. Mechulam,et al.  Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. , 1993, Biochimie.

[29]  G. von Heijne,et al.  Sequence determinants of cytosolic N-terminal protein processing. , 1986, European journal of biochemistry.