Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion.

Hexanucleotide repeat expansion in C9orf72 represents the most common genetic cause of familial and sporadic behavioural variant frontotemporal dementia. Previous studies show that some C9orf72 carriers with behavioural variant frontotemporal dementia exhibit distinctive atrophy patterns whereas others show mild or undetectable atrophy despite severe behavioural impairment. To explore this observation, we examined intrinsic connectivity network integrity in patients with or without the C9orf72 expansion. We studied 28 patients with behavioural variant frontotemporal dementia, including 14 C9orf72 mutation carriers (age 58.3 ± 7.7 years, four females) and 14 non-carriers (age 60.8 ± 6.9 years, four females), and 14 age- and sex-matched healthy controls. Both patient groups included five patients with comorbid motor neuron disease. Neuropsychological data, structural brain magnetic resonance imaging, and task-free functional magnetic resonance imaging were obtained. Voxel-based morphometry delineated atrophy patterns, and seed-based intrinsic connectivity analyses enabled group comparisons of the salience, sensorimotor, and default mode networks. Single-patient analyses were used to explore network imaging as a potential biomarker. Despite contrasting atrophy patterns in C9orf72 carriers versus non-carriers, patient groups showed topographically similar connectivity reductions in the salience and sensorimotor networks. Patients without C9orf72 expansions exhibited increases in default mode network connectivity compared to controls and mutation carriers. Across all patients, behavioural symptom severity correlated with diminished salience network connectivity and heightened default mode network connectivity. In C9orf72 carriers, salience network connectivity reduction correlated with atrophy in the left medial pulvinar thalamic nucleus, and this region further showed diminished connectivity with key salience network hubs. Single-patient analyses revealed salience network disruption and default mode network connectivity enhancement in C9orf72 carriers with early-stage or slowly progressive symptoms. The findings suggest that patients with behavioural variant frontotemporal dementia with or without the C9orf72 expansion show convergent large-scale network breakdowns despite distinctive atrophy patterns. Medial pulvinar degeneration may contribute to the behavioural variant frontotemporal dementia syndrome in C9orf72 carriers by disrupting salience network connectivity. Task-free functional magnetic resonance imaging shows promise in detecting early-stage disease in C9orf72 carriers and may provide a unifying biomarker across diverse anatomical variants.

[1]  Cheryl L. Grady,et al.  Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation , 2013, Cortex.

[2]  J. Morris The Clinical Dementia Rating (CDR) , 1993, Neurology.

[3]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[4]  Fabrizio Esposito,et al.  Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[5]  Ramon Casanova,et al.  Biological parametric mapping: A statistical toolbox for multimodality brain image analysis , 2007, NeuroImage.

[6]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[7]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[8]  Massimo Filippi,et al.  Functional network connectivity in the behavioral variant of frontotemporal dementia , 2013, Cortex.

[9]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[10]  D. Geschwind,et al.  Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.

[11]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[12]  D L Robinson,et al.  Functional contributions of the primate pulvinar. , 1993, Progress in brain research.

[13]  J. Hodges,et al.  Behavioural variant Frontotemporal Dementia: Not all it seems? , 2007, Neurocase.

[14]  M. Kornfeld,et al.  Pure thalamic dementia with a single focus of spongiform change in cerebral cortex. , 1994, Clinical neuropathology.

[15]  M. Mega,et al.  The Neuropsychiatric Inventory , 1994, Neurology.

[16]  Efstathios D. Gennatas,et al.  Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome , 2012, Neuron.

[17]  D. Geschwind,et al.  Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[18]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[19]  F. Yasuno,et al.  Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. , 2004, The American journal of psychiatry.

[20]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[21]  Bill Seeley,et al.  Neurodegenerative diseases target large-scale human brain networks , 2010, Alzheimer's & Dementia.

[22]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[23]  Katja Kollewe,et al.  Changes of resting state brain networks in amyotrophic lateral sclerosis , 2009 .

[24]  W. Byne,et al.  Reduction of right medial pulvinar volume and neuron number in schizophrenia , 2007, Schizophrenia Research.

[25]  Nathaniel Mercaldo,et al.  Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. , 2008, Brain : a journal of neurology.

[26]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[27]  Maria Luisa Gorno-Tempini,et al.  Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. , 2008, Archives of neurology.

[28]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[29]  Ivan Toni,et al.  On the relationship between the “default mode network” and the “social brain” , 2012, Front. Hum. Neurosci..

[30]  C. Caltagirone,et al.  Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD , 2012, Neurobiology of Aging.

[31]  M M Mesulam,et al.  Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus , 1984, The Journal of comparative neurology.

[32]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[33]  E. G. Jones,et al.  A projection from the medial pulvinar to the amygdala in primates , 1976, Brain Research.

[34]  Bradley T. Christian,et al.  D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia , 2006, Schizophrenia Research.

[35]  J. Hodges,et al.  Nonprogressive behavioural frontotemporal dementia: recent developments and clinical implications of the 'bvFTD phenocopy syndrome'. , 2010, Current opinion in neurology.

[36]  Efstathios D. Gennatas,et al.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. , 2010, Brain : a journal of neurology.

[37]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[38]  J. Hodges,et al.  Can progressive and non-progressive behavioural variant frontotemporal dementia be distinguished at presentation? , 2009, Journal of Neurology, Neurosurgery, and Psychiatry.

[39]  John D E Gabrieli,et al.  Development of the declarative memory system in the human brain , 2007, Nature Neuroscience.

[40]  R. Nathan Spreng,et al.  Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network , 2010, Journal of Cognitive Neuroscience.

[41]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[42]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[43]  D. Drachman,et al.  Thalamic dementia and motor neuron disease , 1989, Neurology.

[44]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[45]  P. Mehraein,et al.  Myatrophische Lateralsklerose kombiniert mit Degeneration im Thalamus und der Substantia nigra , 1978, Acta Neuropathologica.

[46]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[47]  Andrew Trujillo,et al.  Intrinsic connectivity network disruption in progressive supranuclear palsy , 2013, Annals of neurology.

[48]  Marina Boccardi,et al.  Frontotemporal dementia as a neural system disease , 2005, Neurobiology of Aging.

[49]  J. Martín,et al.  Analysis of the prion protein gene in thalamic dementia , 1992, Neurology.

[50]  J R Hodges,et al.  Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. , 2009, Brain : a journal of neurology.

[51]  B L Miller,et al.  Behavioral disorders in the frontal and temporal variants of frontotemporal dementia , 2004, Neurology.

[52]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[53]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[54]  J. Bogousslavsky,et al.  The thalamus and behavior , 2006, Neurology.

[55]  M. Costandi Default Mode Network , 2015 .

[56]  M. Freedman,et al.  Frontotemporal lobar degeneration , 1998, Neurology.

[57]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[58]  Steven Knight,et al.  Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. , 2011, Brain : a journal of neurology.

[59]  K. Kosaka,et al.  [Amyotrophic lateral sclerosis with degeneration of thalamus and substantia nigra (author's transl)]. , 1978, Acta neuropathologica.

[60]  Katherine E. Prater,et al.  Distinct Cerebellar Contributions to Intrinsic Connectivity Networks , 2009, NeuroImage.

[61]  Ilya M. Veer,et al.  Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia , 2013, Neurology.

[62]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[63]  J. Schmahmann Vascular syndromes of the thalamus. , 2003, Stroke.

[64]  B. Boeve,et al.  Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[65]  Robert A. Gross,et al.  Altered functional connectivity in asymptomatic MAPT subjects: A comparison to bvFTD , 2011 .

[66]  D. Pandya,et al.  Corticostriatal connections of extrastriate visual areas in rhesus monkeys. , 1995, The Journal of comparative neurology.

[67]  M. Folstein,et al.  The Mini-Mental State Examination. , 1983, Archives of general psychiatry.

[68]  D. Yves von Cramon,et al.  Towards a nosology for frontotemporal lobar degenerations—A meta-analysis involving 267 subjects , 2007, NeuroImage.

[69]  Efstathios D. Gennatas,et al.  Network-level structural covariance in the developing brain , 2010, Proceedings of the National Academy of Sciences.

[70]  R. Nitrini,et al.  Frontotemporal dementia with severe thalamic involvement: a clinical and neuropathological study. , 2003, Arquivos de neuro-psiquiatria.

[71]  M. Corbetta,et al.  Episodic Memory Retrieval, Parietal Cortex, and the Default Mode Network: Functional and Topographic Analyses , 2011, The Journal of Neuroscience.

[72]  Mert R. Sabuncu,et al.  The influence of head motion on intrinsic functional connectivity MRI , 2012, NeuroImage.