On integrability of the geodesic deviation equation
暂无分享,去创建一个
[1] G. Gibbons,et al. Velocity Memory Effect for polarized gravitational waves , 2018, 1802.09061.
[2] V. Frolov,et al. Black holes, hidden symmetries, and complete integrability , 2017, Living reviews in relativity.
[3] G. Gibbons,et al. Soft gravitons and the memory effect for plane gravitational waves , 2017, 1705.01378.
[4] G. Gibbons,et al. The Memory Effect for Plane Gravitational Waves , 2017, 1704.05997.
[5] G. Gibbons,et al. Carroll symmetry of plane gravitational waves , 2017, 1702.08284.
[6] G. Gibbons,et al. Eisenhart lifts and symmetries of time-dependent systems , 2016, 1605.01932.
[7] T. Houri,et al. Antisymmetric tensor generalizations of affine vector fields. , 2015, Journal of mathematical physics.
[8] C. Lammerzahl,et al. On geodesic deviation in Schwarzschild spacetime , 2015, 2015 IEEE Metrology for Aerospace (MetroAeroSpace).
[9] M. Cariglia. Hidden Symmetries of Dynamics in Classical and Quantum Physics , 2014, 1411.1262.
[10] C. Lammerzahl,et al. Dynamics of test particles in the general five-dimensional Myers-Perry spacetime , 2014, 1404.3865.
[11] R. Švarc,et al. Physical interpretation of Kundt spacetimes using geodesic deviation , 2013, 1306.6554.
[12] V. Frolov,et al. Geometry of Lax pairs: Particle motion and Killing-Yano tensors , 2012, 1210.3079.
[13] V. Kagramanova,et al. Analytic treatment of geodesics in five-dimensional Myers-Perry space-times , 2012, 1208.3686.
[14] J. Podolský,et al. Geodesic deviation: Useful tool for understanding higher dimensional spacetimes , 2012 .
[15] J. Podolský,et al. Interpreting spacetimes of any dimension using geodesic deviation , 2012, 1201.4790.
[16] G. Koekoek,et al. Geodesic deviations: modeling extreme mass-ratio systems and their gravitational waves , 2011, 1103.5612.
[17] Marc Favata. The gravitational-wave memory effect , 2010, 1003.3486.
[18] C. Lammerzahl,et al. Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space-times , 2010, 1009.6117.
[19] T. Dray,et al. Tensor generalizations of affine symmetry vectors , 2009, 0907.5470.
[20] C. Laemmerzahl,et al. Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes , 2008, 0812.2428.
[21] D. Page,et al. Integrability of Geodesic Motion in General Kerr-NUT-AdS Spacetimes , 2006, hep-th/0611083.
[22] C. W. Mitchell,et al. General Kerr–NUT–AdS metrics in all dimensions , 2006, hep-th/0604125.
[23] V. Frolov,et al. Particle and light motion in a space-time of a five-dimensional rotating black hole , 2003, gr-qc/0301016.
[24] R. Kerner. Generalized geodesic deviations: a Lagrangean approach , 2003 .
[25] R. Kerner,et al. Higher-order geodesic deviations applied to the Kerr metric , 2002, gr-qc/0205019.
[26] C. Chicone,et al. The generalized Jacobi equation , 2002, gr-qc/0203073.
[27] R. Kerner,et al. Relativistic epicycles: another approach to geodesic deviations , 2001, gr-qc/0102099.
[28] R. Kerner,et al. Motions and worldline deviations in Einstein-Maxwell theory , 2000, gr-qc/0009016.
[29] Firenze,et al. Geometric approach to Hamiltonian dynamics and statistical mechanics , 1999, cond-mat/9912092.
[30] B. Konopelchenko,et al. On equation of geodesic deviation and its solutions , 1997, solv-int/9705003.
[31] Gibbons,et al. Celestial mechanics, conformal structures, and gravitational waves. , 1991, Physical review. D, Particles and fields.
[32] P. Jaranowski,et al. Geodesic deviation in the Schwarzschild space‐time , 1989 .
[33] S. Bażański. Hamilton-Jacobi formalism for geodesics and geodesic deviations , 1989 .
[34] M. Perrin,et al. Bargmann structures and Newton-Cartan theory. , 1985, Physical review. D, Particles and fields.
[35] G. Caviglia. Dynamical symmetries: An approach to Jacobi fields and to constants of geodesic motion , 1983 .
[36] G. Caviglia,et al. Geodesic deviation and first integrals of motion , 1982 .
[37] G. Caviglia,et al. Equation of geodesic deviation and killing tensors , 1982 .
[38] S. Christensen. Regularization, renormalization, and covariant geodesic point separation , 1978 .
[39] R. Beig,et al. Radiation damping in a gravitational field , 1973 .
[40] R. Penrose,et al. On quadratic first integrals of the geodesic equations for type {22} spacetimes , 1970 .
[41] B. Carter. Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .
[42] B. Carter. Global structure of the Kerr family of gravitational fields , 1968 .
[43] R. Kerr,et al. Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .
[44] A. Nijenhuis. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .
[45] J. A. Schouten. On the differential operators of first order in tensor calculus , 1953 .