On integrability of the geodesic deviation equation

[1]  G. Gibbons,et al.  Velocity Memory Effect for polarized gravitational waves , 2018, 1802.09061.

[2]  V. Frolov,et al.  Black holes, hidden symmetries, and complete integrability , 2017, Living reviews in relativity.

[3]  G. Gibbons,et al.  Soft gravitons and the memory effect for plane gravitational waves , 2017, 1705.01378.

[4]  G. Gibbons,et al.  The Memory Effect for Plane Gravitational Waves , 2017, 1704.05997.

[5]  G. Gibbons,et al.  Carroll symmetry of plane gravitational waves , 2017, 1702.08284.

[6]  G. Gibbons,et al.  Eisenhart lifts and symmetries of time-dependent systems , 2016, 1605.01932.

[7]  T. Houri,et al.  Antisymmetric tensor generalizations of affine vector fields. , 2015, Journal of mathematical physics.

[8]  C. Lammerzahl,et al.  On geodesic deviation in Schwarzschild spacetime , 2015, 2015 IEEE Metrology for Aerospace (MetroAeroSpace).

[9]  M. Cariglia Hidden Symmetries of Dynamics in Classical and Quantum Physics , 2014, 1411.1262.

[10]  C. Lammerzahl,et al.  Dynamics of test particles in the general five-dimensional Myers-Perry spacetime , 2014, 1404.3865.

[11]  R. Švarc,et al.  Physical interpretation of Kundt spacetimes using geodesic deviation , 2013, 1306.6554.

[12]  V. Frolov,et al.  Geometry of Lax pairs: Particle motion and Killing-Yano tensors , 2012, 1210.3079.

[13]  V. Kagramanova,et al.  Analytic treatment of geodesics in five-dimensional Myers-Perry space-times , 2012, 1208.3686.

[14]  J. Podolský,et al.  Geodesic deviation: Useful tool for understanding higher dimensional spacetimes , 2012 .

[15]  J. Podolský,et al.  Interpreting spacetimes of any dimension using geodesic deviation , 2012, 1201.4790.

[16]  G. Koekoek,et al.  Geodesic deviations: modeling extreme mass-ratio systems and their gravitational waves , 2011, 1103.5612.

[17]  Marc Favata The gravitational-wave memory effect , 2010, 1003.3486.

[18]  C. Lammerzahl,et al.  Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space-times , 2010, 1009.6117.

[19]  T. Dray,et al.  Tensor generalizations of affine symmetry vectors , 2009, 0907.5470.

[20]  C. Laemmerzahl,et al.  Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes , 2008, 0812.2428.

[21]  D. Page,et al.  Integrability of Geodesic Motion in General Kerr-NUT-AdS Spacetimes , 2006, hep-th/0611083.

[22]  C. W. Mitchell,et al.  General Kerr–NUT–AdS metrics in all dimensions , 2006, hep-th/0604125.

[23]  V. Frolov,et al.  Particle and light motion in a space-time of a five-dimensional rotating black hole , 2003, gr-qc/0301016.

[24]  R. Kerner Generalized geodesic deviations: a Lagrangean approach , 2003 .

[25]  R. Kerner,et al.  Higher-order geodesic deviations applied to the Kerr metric , 2002, gr-qc/0205019.

[26]  C. Chicone,et al.  The generalized Jacobi equation , 2002, gr-qc/0203073.

[27]  R. Kerner,et al.  Relativistic epicycles: another approach to geodesic deviations , 2001, gr-qc/0102099.

[28]  R. Kerner,et al.  Motions and worldline deviations in Einstein-Maxwell theory , 2000, gr-qc/0009016.

[29]  Firenze,et al.  Geometric approach to Hamiltonian dynamics and statistical mechanics , 1999, cond-mat/9912092.

[30]  B. Konopelchenko,et al.  On equation of geodesic deviation and its solutions , 1997, solv-int/9705003.

[31]  Gibbons,et al.  Celestial mechanics, conformal structures, and gravitational waves. , 1991, Physical review. D, Particles and fields.

[32]  P. Jaranowski,et al.  Geodesic deviation in the Schwarzschild space‐time , 1989 .

[33]  S. Bażański Hamilton-Jacobi formalism for geodesics and geodesic deviations , 1989 .

[34]  M. Perrin,et al.  Bargmann structures and Newton-Cartan theory. , 1985, Physical review. D, Particles and fields.

[35]  G. Caviglia Dynamical symmetries: An approach to Jacobi fields and to constants of geodesic motion , 1983 .

[36]  G. Caviglia,et al.  Geodesic deviation and first integrals of motion , 1982 .

[37]  G. Caviglia,et al.  Equation of geodesic deviation and killing tensors , 1982 .

[38]  S. Christensen Regularization, renormalization, and covariant geodesic point separation , 1978 .

[39]  R. Beig,et al.  Radiation damping in a gravitational field , 1973 .

[40]  R. Penrose,et al.  On quadratic first integrals of the geodesic equations for type {22} spacetimes , 1970 .

[41]  B. Carter Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .

[42]  B. Carter Global structure of the Kerr family of gravitational fields , 1968 .

[43]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[44]  A. Nijenhuis Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .

[45]  J. A. Schouten On the differential operators of first order in tensor calculus , 1953 .