A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting
暂无分享,去创建一个
[1] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[2] A. Dax. Loss and retention of accuracy in affine scaling methods , 2001 .
[3] Axel Ruhe. Numerical aspects of gram-schmidt orthogonalization of vectors , 1983 .
[4] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[5] J. Rice. Experiments on Gram-Schmidt orthogonalization , 1966 .
[6] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[7] N. Abdelmalek. Round off error analysis for Gram-Schmidt method and solution of linear least squares problems , 1971 .
[8] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[9] G. W. Stewart,et al. Matrix algorithms , 1998 .
[10] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[11] T. Jordan,et al. EXPERIMENTS ON ERROR GROWTH ASSOCIATED WITH SOME LINEAR LEAST-SQUARES PROCEDURES. , 1968 .
[12] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[13] Gene H. Golub,et al. Matrix computations , 1983 .
[14] Christopher C. Paige,et al. Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm , 1992, SIAM J. Matrix Anal. Appl..