A discrete-continuum mosaic model for the buckling of inner tubes of double-walled carbon nanotubes under compression

[1]  Xiangyang Wang,et al.  A multiscale discrete-continuum mosaic method for nonlinear mechanical behaviors of periodic micro/nano-scale structures , 2021 .

[2]  T. H. Daouadji,et al.  Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory , 2020 .

[3]  Y. W. Wang,et al.  Temperature-related study on buckling properties of double-walled carbon nanotubes , 2020 .

[4]  M. Hussain,et al.  Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory , 2020 .

[5]  Xiangyang Wang,et al.  A van der Waals contact-bond model for low-dimensional nanoscale carbon materials based on the quasi-continuum method , 2019, Journal of Materials Research.

[6]  Hang Zou,et al.  A Non-Linear Spring Model for Predicting Modal Behavior of Oscillators Built from Double Walled Carbon Nanotubes , 2019, Journal of Nano Research.

[7]  S. Lai,et al.  Superelasticity and wrinkles controlled by twisting circular graphene , 2018 .

[8]  K. Bouakkaz,et al.  Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes , 2018 .

[9]  A. A. Bousahla,et al.  Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium , 2018, Mechanics of Composite Materials.

[10]  Annick Loiseau,et al.  Structural Properties of Double-Walled Carbon Nanotubes Driven by Mechanical Interlayer Coupling. , 2017, ACS nano.

[11]  E. A. Bedia,et al.  Investigation of Thermal and Chirality Effects on Vibration of Single-Walled Carbon Nanotubes Embedded in a Polymeric Matrix Using Nonlocal Elasticity Theories , 2016, Mechanics of Composite Materials.

[12]  M. Dresselhaus,et al.  A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications , 2016 .

[13]  Xu Guo,et al.  Finite deformation of single-walled carbon nanocones under axial compression using a temperature-related multiscale quasi-continuum model , 2016 .

[14]  M. Aydogdu,et al.  Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity , 2016 .

[15]  Haiping Fang,et al.  Impeded Mass Transportation Due to Defects in Thermally Driven Nanotube Nanomotor , 2015 .

[16]  Q. Qin,et al.  A nano universal joint made from curved double-walled carbon nanotubes , 2015 .

[17]  M. Dresselhaus,et al.  Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes: A Resonance Raman Study , 2014 .

[18]  Xiangyang Wang,et al.  Quasi-Continuum Contact Model for the Simulation of Severe Deformation of Single-Walled Carbon Nanotubes at Finite Temperature , 2013 .

[19]  Xu Guo,et al.  Numerical simulation for finite deformation of single-walled carbon nanotubes at finite temperature using temperature-related higher order Cauchy-Born rule based quasi-continuum model , 2012 .

[20]  H. W. Zhang,et al.  Computer simulation of buckling behavior of double-walled carbon nanotubes with abnormal interlayer distances , 2007 .

[21]  M. Dresselhaus,et al.  Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. , 2007, Physical review letters.

[22]  C. Wang,et al.  Effect of strain rate on the buckling behavior of single- and double-walled carbon nanotubes , 2007 .

[23]  M. Dresselhaus,et al.  Review on the symmetry-related properties of carbon nanotubes , 2006 .

[24]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[25]  Fumihito Arai,et al.  Towards nanotube linear servomotors , 2006, IEEE Transactions on Automation Science and Engineering.

[26]  R. Batra,et al.  Buckling of multiwalled carbon nanotubes under axial compression , 2006 .

[27]  T. Natsuki,et al.  Mechanical properties of single- and double-walled carbon nanotubes under hydrostatic pressure , 2006 .

[28]  K. M. Liew,et al.  Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells , 2005 .

[29]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[30]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[31]  Ted Belytschko,et al.  Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .

[32]  Paul Steinmann,et al.  On higher gradients in continuum-atomistic modelling , 2003 .

[33]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[34]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[35]  Riichiro Saito,et al.  Anomalous potential barrier of double-wall carbon nanotube , 2001 .

[36]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[37]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[38]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[39]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[40]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[41]  T. H. Daouadji,et al.  Theoretical analysis of chirality and scale effects on critical bucklingload of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix , 2019 .

[42]  Q. Han,et al.  Postbuckling prediction of double-walled carbon nanotubes under axial compression , 2007 .

[43]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .