A Frank–Wolfe based branch-and-bound algorithm for mean-risk optimization

We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems by designing a branch-and-bound algorithm, where at each node, the continuous relaxation is solved by a non-monotone Frank–Wolfe type algorithm with away-steps. Experimental results on portfolio optimization problems show that our approach can outperform the MISOCP solver of CPLEX 12.6 for instances where a linear risk-weighting function is considered.

[1]  Martin Jaggi,et al.  An Affine Invariant Linear Convergence Analysis for Frank-Wolfe Algorithms , 2013, 1312.7864.

[2]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[3]  Paul Grigas,et al.  New analysis and results for the Frank–Wolfe method , 2013, Mathematical Programming.

[4]  L. Grippo,et al.  A truncated Newton method with nonmonotone line search for unconstrained optimization , 1989 .

[5]  Alper Atamtürk,et al.  Polymatroids and mean-risk minimization in discrete optimization , 2008, Oper. Res. Lett..

[6]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[7]  Kenneth L. Clarkson,et al.  Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.

[8]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Luigi Grippo,et al.  Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method , 2002, Comput. Optim. Appl..

[11]  Melvyn Sim,et al.  Robust Discrete Optimization , 2003 .

[12]  Patrice Marcotte,et al.  Some comments on Wolfe's ‘away step’ , 1986, Math. Program..

[13]  Francesco Cesarone,et al.  A new method for mean-variance portfolio optimization with cardinality constraints , 2013, Ann. Oper. Res..

[14]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[15]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[16]  J. Dunn Convergence Rates for Conditional Gradient Sequences Generated by Implicit Step Length Rules , 1980 .

[17]  Christoph Buchheim,et al.  A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming , 2015, SIAM J. Optim..

[18]  Ziyou Gao,et al.  The convergence of equilibrium algorithms with non-monotone line search technique , 2004, Appl. Math. Comput..

[19]  Christoph Buchheim,et al.  Lagrangean Decomposition for Mean-Variance Combinatorial Optimization , 2014, ISCO.

[20]  Alberto Caprara,et al.  An effective branch-and-bound algorithm for convex quadratic integer programming , 2010, Math. Program..

[21]  Bryant A. Julstrom Greedy, genetic, and greedy genetic algorithms for the quadratic knapsack problem , 2005, GECCO '05.

[22]  Christoph Buchheim,et al.  Active Set Methods with Reoptimization for Convex Quadratic Integer Programming , 2014, ISCO.

[23]  Christoph Buchheim,et al.  An Exact Algorithm for Nonconvex Quadratic Integer Minimization Using Ellipsoidal Relaxations , 2013, SIAM J. Optim..

[24]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[25]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..