Performance monitoring of heat exchangers via adaptive observers

Abstract In this paper, a method for monitoring the performance degradation in a heat exchanger is presented. This method is based on the use of an adaptive observer which estimates the overall heat transfer coefficient U . The monitoring of this parameter can be useful to decide when the heat exchanger needs preventive or corrective maintenance. A simplified mathematical model of the heat exchanger is used to synthesize the adaptive observer. The effectiveness of the proposed method is demonstrated via numerical simulations and through experimental results.

[1]  Thomas F. Edgar,et al.  Nonlinear Heat Exchanger Control through the Use of Partially Linearized Control Variables , 1986 .

[2]  Denis Dochain,et al.  Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters , 2000 .

[4]  Murat Arcak,et al.  A nonlinear observer design for fuel cell hydrogen estimation , 2004, IEEE Transactions on Control Systems Technology.

[5]  Mitsutaka Nakamura,et al.  Analysis and Steps to Mitigate Heat Exchanger Fouling in an Aromatics Plant , 2003 .

[6]  Katalin M. Hangos,et al.  Controllability and observability of heat exchanger networks in the time-varying parameter case , 1995 .

[7]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[8]  Rajesh Rajamani,et al.  Adaptive observers for active automotive suspensions: theory and experiment , 1995, IEEE Trans. Control. Syst. Technol..

[9]  Gábor Szederkényi,et al.  Grey box fault detection of heat exchangers , 2000 .

[10]  Riccardo Marino,et al.  Nonlinear control design , 1995 .

[11]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..

[12]  Belle R. Upadhyaya,et al.  Development of a Data-Based Method for Performance Monitoring of Heat Exchangers , 2003 .

[13]  J. M. Coulson,et al.  Heat Transfer , 2018, Finite Element Method for Solids and Structures.

[14]  D. Depeyre,et al.  Computerized optimum design and dynamic simulation of heat exchanger networks , 1993 .

[15]  Philippe Bogaerts,et al.  A hybrid asymptotic-Kalman observer for bioprocesses , 1999 .

[16]  K. Narendra,et al.  An adaptive observer and identifier for a linear system , 1973 .

[17]  Hassan Hammouri,et al.  Nonlinear continuous–discrete observers: application to emulsion polymerization reactors , 2002 .

[18]  P. Dooren,et al.  Numerical aspects of different Kalman filter implementations , 1986 .

[19]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[20]  G. Besançon Remarks on nonlinear adaptive observer design , 2000 .

[21]  Ahmet Palazoglu,et al.  On the Stability Analysis of Nonlinear Feedback Systems , 1989, 1989 American Control Conference.

[22]  Coleman B. Brosilow,et al.  Nonlinear inferential control , 1988 .

[23]  Hassan Hammouri,et al.  Observer Design for Continuous-Discrete Time State Affine Systems up to Output Injection , 2004, Eur. J. Control.

[24]  M. Gevers,et al.  Stable adaptive observers for nonlinear time-varying systems , 1987 .

[25]  M. Chidambaram,et al.  Non-linear controllers for a heat exchanger , 1992 .

[26]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[28]  C. Georgakis,et al.  Application of an extended Luenberger observer to the control of multicomponent batch distillation , 1991 .

[29]  Glenn Y. Masada,et al.  Evaluation of lumped parameter heat exchanger dynamic models. , 1982 .

[30]  Denis Dochain State observers for processes with uncertain kinetics , 2003 .

[31]  D. Luenberger An introduction to observers , 1971 .

[32]  R. Devanathan,et al.  Modelling and dynamic feedback linearisation of a heat exchanger model , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[33]  R. Femat,et al.  An analytical study of the logarithmic mean temperature difference , 2005 .