Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling

We report on the growth and characterization of high external quantum efficiency (EQE) GaAs/GaInP double heterostructures. By properly treating the GaAs/GaInP interface, we are able to produce structures measuring a record EQE of 99.5% ± 0.1% in GaAs. This efficiency exceeds the requirement for achieving laser cooling in GaAs. However, net cooling has not yet been realized due to residual below gap background absorption.

[1]  N. Kwong,et al.  Optical refrigeration of GaAs: Theoretical study , 2007 .

[2]  T. Kuech,et al.  Mechanism of carbon incorporation in MOCVD GaAs , 1984 .

[3]  Y. Shimogaki,et al.  Abrupt InGaP∕GaAs heterointerface grown by optimized gas-switching sequence in metal organic vapor phase epitaxy , 2008 .

[4]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[5]  G. Weimann,et al.  Cooling of a semiconductor by luminescence up-conversion , 1999 .

[6]  Yujie J. Ding,et al.  From anti‐Stokes photoluminescence to resonant Raman scattering in GaN single crystals and GaN‐based heterostructures , 2012 .

[7]  Richard K. Ahrenkiel,et al.  Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces , 1989 .

[8]  M. Gokhale,et al.  Long-wavelength photoluminescence from InGaP/GaAs heterointerfaces grown by metal organic vapour-phase epitaxy , 2000 .

[9]  T. H. Gfroerer,et al.  Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector , 1998 .

[10]  Mansoor Sheik-Bahae,et al.  Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures , 2005 .

[11]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[12]  N. Holonyak,et al.  Metalorganic chemical vapor deposition growth and characterization of InGaP/GaAs superlattices , 2006 .

[13]  T. H. Gfroerer,et al.  External radiative quantum efficiency of 96% from a GaAs / GaInP heterostructure , 1997 .

[14]  D. Hurle A COMPREHENSIVE THERMODYNAMIC ANALYSIS OF NATIVE POINT DEFECT AND DOPANT SOLUBILITIES IN GALLIUM ARSENIDE , 1999 .

[15]  M. Sheik-Bahae,et al.  Can laser light cool semiconductors? , 2004, Physical review letters.

[16]  Diana L. Huffaker,et al.  Growth and characterization of GaAs/InGaP heterostructure for semiconductor laser cooling , 2007, SPIE LASE.

[17]  R. Kúdela,et al.  Formation of interfaces in InGaP/GaAs/InGaP quantum wells , 2000 .

[18]  David J. Dunstan On the measurement of absolute radiative and non-radiative recombination efficiencies in semiconductor lasers , 1992 .

[19]  Martin A. Green,et al.  High external quantum efficiency of planar semiconductor structures , 2004 .

[20]  S. Sugitani,et al.  Photoluminescence characterization of InGaP/GaAs heterostructures grown by metalorganic chemical vapor deposition , 1995 .

[22]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[23]  Mansoor Sheik-Bahae,et al.  Precision, all-optical measurement of external quantum efficiency in semiconductors , 2011 .

[24]  G. Attolini,et al.  Parasitic Interlayer at the GaAs-on-InGaP Interface in MOVPE InGaP ∕ GaAs : A Study by the Chemically Sensitive (200) Diffraction , 2009 .

[25]  Jacob B Khurgin,et al.  Surface plasmon assisted laser cooling of solids , 2007, 2007 Quantum Electronics and Laser Science Conference.

[26]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.