The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

BackgroundGlobodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security.ResultsWe present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control.ConclusionsThe data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.

[1]  D. Bird,et al.  A Sequence-Anchored Linkage Map of the Plant–Parasitic Nematode Meloidogyne hapla Reveals Exceptionally High Genome-Wide Recombination , 2012, G3: Genes | Genomes | Genetics.

[2]  G. Smant,et al.  The Cyst Nematode SPRYSEC Protein RBP-1 Elicits Gpa2- and RanGAP2-Dependent Plant Cell Death , 2009, PLoS pathogens.

[3]  Jessica C. Ebert,et al.  Accurate whole genome sequencing and haplotyping from10-20 human cells , 2012, Nature.

[4]  S. Nadler,et al.  Evolution of plant parasitism among nematodes. , 2004, Annual review of phytopathology.

[5]  K. Yamamoto,et al.  Nuclear hormone receptors in nematodes: Evolution and function , 2011, Molecular and Cellular Endocrinology.

[6]  A. C. Triantaphyllou,et al.  Karyotype analysis of the plant-parasitic nematode Heterodera glycines by electron microscopy. 1. The diploid. , 1979, Journal of cell science.

[7]  B. Endo Ultrastructure of the intestine of second and third juvenile stages of the soybean cyst nematode, Heterodera glycines , 1988 .

[8]  P. Goldstein,et al.  Three-Dimensional Ultrastructural Karyotype Analysis from the Meiotic Parthenogenetic Nematode Heterodera betulae. , 2003, Journal of nematology.

[9]  A. C. Triantaphyllou Environmental Sex Differentiation of Nematodes in Relation to Pest Management , 1973 .

[10]  G. Gheysen,et al.  Arabinogalactan endo-1,4-β-galactosidase: a putative plant cell wall-degrading enzyme of plant-parasitic nematodes , 2009 .

[11]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[12]  M. Mitreva,et al.  RNAi Effector Diversity in Nematodes , 2011, PLoS neglected tropical diseases.

[13]  C. Fleming,et al.  flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  D. Gems,et al.  Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage , 2011, Free radical biology & medicine.

[15]  J. Miwa,et al.  C. elegans osm-3 gene mediating osmotic avoidance behaviour encodes a kinesin-like protein. , 1993, Neuroreport.

[16]  E. Danchin,et al.  The genomes of root-knot nematodes. , 2009, Annual review of phytopathology.

[17]  V. Blok,et al.  Identification of Globodera rostochiensis and G. pallida in the Ukraine by PCR , 2004, European Journal of Plant Pathology.

[18]  A. Coghlan,et al.  Nematode genome evolution. , 2005, WormBook : the online review of C. elegans biology.

[19]  R. Plasterk,et al.  Genes Required for Systemic RNA Interference in Caenorhabditis elegans , 2004, Current Biology.

[20]  R. Hussey,et al.  Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematodeMeloidogyne incognita , 1991, Protoplasma.

[21]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[22]  J. Pickup,et al.  An evaluation of the implications of virulence in non-European populations of Globodera pallida and G. rostochiensis for potato cultivation in Europe , 2012 .

[23]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[24]  Mark Blaxter,et al.  NEMBASE4: the nematode transcriptome resource. , 2011, International journal for parasitology.

[25]  C. Foyer,et al.  Glutathione in plants: an integrated overview. , 2012, Plant, cell & environment.

[26]  A. Schots,et al.  An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. , 2000, Molecular plant-microbe interactions : MPMI.

[27]  R. Hussey,et al.  Ultrastructure of esophageal glands and their secretory granules in the root-knot nematodeMeloidogyne incognita , 1990, Protoplasma.

[28]  M. Moens,et al.  Introduction to Plant-Parasitic Nematodes; Modes of Parasitism , 2011 .

[29]  J. T. Jones,et al.  Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. , 2004, Gene.

[30]  J. F. Spears The golden nematode handbook. Survey, laboratory, control, and quarantine procedures. , 1968 .

[31]  L. M. Jones,et al.  C. elegans as a Resource for Studies on Plant Parasitic Nematodes , 2011 .

[32]  M. Phillips,et al.  Invasion and development of juveniles of Globodera pallida in hybrids of Solanum vernei x S. tuberosum , 1982 .

[33]  John T Jones,et al.  Characterization of a chorismate mutase from the potato cyst nematode Globodera pallida. , 2003, Molecular plant pathology.

[34]  R. Sommer,et al.  Homology and the hierarchy of biological systems. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  E. Danchin,et al.  Horizontal gene transfer in nematodes: a catalyst for plant parasitism? , 2011, Molecular plant-microbe interactions : MPMI.

[36]  K. Evans,et al.  Potato cyst nematodes in England and Wales: occurrence and distribution , 2002 .

[37]  N. V. Bers Characterization of genes coding for small hypervariable peptides in Globodera rostochiensis , 2008 .

[38]  Xiaohong Wang,et al.  Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. , 2009, Molecular plant-microbe interactions : MPMI.

[39]  D. Zarkower Somatic sex determination. , 2006, WormBook : the online review of C. elegans biology.

[40]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[41]  L. Carta,et al.  Morphological and Molecular Identification of Globodera pallida Associated with Potato in Idaho. , 2007, Journal of nematology.

[42]  C. Fleming,et al.  Neuromuscular function in plant parasitic nematodes: a target for novel control strategies? , 2005, Parasitology.

[43]  P. Abad,et al.  (Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula , 2012, PLoS pathogens.

[44]  John T Jones,et al.  Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. , 2009, Molecular plant pathology.

[45]  D. Trudgill Yield losses caused by potato cyst nematodes: a review of the current position in Britain and prospects for improvements , 1986 .

[46]  Jeremy Zucker,et al.  Genomics of Loa loa, a Wolbachia-free filarial parasite of humans , 2013, Nature Genetics.

[47]  M. Blaxter,et al.  Genomics and transcriptomics across the diversity of the Nematoda , 2012, Parasite immunology.

[48]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[49]  P. Urwin,et al.  RNA interference in plant parasitic nematodes: a summary of the current status , 2012, Parasitology.

[50]  L. Hillier,et al.  A global analysis of C. elegans trans-splicing. , 2011, Genome research.

[51]  L. Salkoff,et al.  Potassium channels in C. elegans. , 2005, WormBook : the online review of C. elegans biology.

[52]  J. O’Brien,et al.  Reactive oxygen species and their role in plant defence and cell wall metabolism , 2012, Planta.

[53]  Varghese P. Thomas,et al.  Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism , 2008, Proceedings of the National Academy of Sciences.

[54]  Jonathan E. Allen,et al.  Draft Genome of the Filarial Nematode Parasite Brugia malayi , 2007, Science.

[55]  R. Hussey,et al.  The parasitome of the phytonematode Heterodera glycines. , 2003, Molecular plant-microbe interactions : MPMI.

[56]  A. Petrescu,et al.  A secreted SPRY domain-containing protein (SPRYSEC) from the plant-parasitic nematode Globodera rostochiensis interacts with a CC-NB-LRR protein from a susceptible tomato. , 2009, Molecular plant-microbe interactions : MPMI.

[57]  M. Reichelt,et al.  Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae , 2012, Proceedings of the National Academy of Sciences.

[58]  K. Evans,et al.  Distribution of Species of Potato Cyst-Nematodes in South America , 1975 .

[59]  Alejandro Sanchez-Flores,et al.  Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus , 2011, PLoS pathogens.

[60]  A.M.T. Bongers,et al.  A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. , 2009 .

[61]  S. Buckingham,et al.  Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. , 2006, International journal for parasitology.

[62]  N. Talbot,et al.  Insights from Sequencing Fungal and Oomycete Genomes: What Can We Learn about Plant Disease and the Evolution of Pathogenicity? , 2007, The Plant Cell Online.

[63]  Joakim Lundeberg,et al.  Stepping stones in DNA sequencing , 2012, Biotechnology journal.

[64]  Elaine R. Mardis,et al.  The draft genome of the parasitic nematode Trichinella spiralis , 2011, Nature Genetics.

[65]  C. Behm The role of trehalose in the physiology of nematodes. , 1997, International journal for parasitology.

[66]  Marc Robinson-Rechavi,et al.  Explosive Lineage-Specific Expansion of the Orphan Nuclear Receptor HNF4 in Nematodes , 2005, Journal of Molecular Evolution.

[67]  D. Trudgill,et al.  Variation of Virulence, in Terms of Quantitative Reproduction of Globodera Pallida Populations, From Europe and South America, in Relation To Resistance From Solanum Vernei and S. Tuberosum Ssp. Andigena Cpc 2802 , 1998 .

[68]  J. Kaplan,et al.  The EGL-3 Proprotein Convertase Regulates Mechanosensory Responses of Caenorhabditis elegans , 2001, The Journal of Neuroscience.

[69]  A Comparison of Three Molecular Markers for the Identification of Populations of Globodera pallida. , 2012, Journal of nematology.

[70]  Xiaowu Gai,et al.  Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines , 2007, Genome Biology.

[71]  J. P. Craig,et al.  Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B(1), B(5), and B(7) in Heterodera glycines. , 2009, Journal of nematology.

[72]  A. Ivens,et al.  The Transcriptional Response of Caenorhabditis elegans to Ivermectin Exposure Identifies Novel Genes Involved in the Response to Reduced Food Intake , 2012, PloS one.

[73]  M. Sobczak,et al.  Cyst Nematodes and Syncytia , 2011 .

[74]  S. Turner Population decline of potato cyst nematodes (Globodera rostochiensis, G. pallida) in field soils in Northern Ireland , 1996 .

[75]  Godelieve Gheysen,et al.  Genomics and Molecular Genetics of Plant-Nematode Interactions , 2011 .

[76]  D. Coyne,et al.  Current Nematode Threats to World Agriculture , 2011 .

[77]  A. C. Triantaphyllou,et al.  Karyotype analysis of Meloidogyne hapla by 3-D reconstruction of synaptonemal complexes from electron microscopy of serial sections , 2004, Chromosoma.

[78]  Shelly C. Lu Glutathione synthesis. , 2013, Biochimica et biophysica acta.

[79]  D. Trudgill The effect of environment on sex determination in Heterodera rostochiensis. , 1967 .

[80]  P. Keeling Reduction and compaction in the genome of the apicomplexan parasite Cryptosporidium parvum. , 2004, Developmental cell.

[81]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[82]  P. Urwin,et al.  Molecular aspects of cyst nematodes. , 2005, Molecular plant pathology.

[83]  Graham J. Etherington,et al.  From pathogen genomes to host plant processes: the power of plant parasitic oomycetes , 2013, Genome Biology.

[84]  S. Goto,et al.  The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  S. Morand,et al.  Genome size of plant-parasitic nematodes , 2007 .

[86]  Acj Roth,et al.  Erratum: Algorithm of OMA for large-scale orthology inference (BMC Bioinformatics (2008) vol. 9 (518)) , 2009 .

[87]  R. Perry,et al.  The genome size and chromosome complement of the potato cyst nematode Globodera pallida , 1995 .

[88]  W. M. Robertson,et al.  Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. , 2000, Molecular and biochemical parasitology.

[89]  T. Lindblom,et al.  Xenobiotic detoxification in the nematode Caenorhabditis elegans. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[90]  Graziano Pesole,et al.  Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita , 2008, Nature Biotechnology.

[91]  Gaston H. Gonnet,et al.  Algorithm of OMA for large-scale orthology inference , 2008, BMC Bioinformatics.

[92]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[93]  P. Spanu The genomics of obligate (and nonobligate) biotrophs. , 2012, Annual review of phytopathology.

[94]  A. Schots,et al.  Potato root diffusate-induced secretion of soluble, basic proteins originating from the subventral esophageal glands of potato cyst nematodes. , 1997, Phytopathology.

[95]  Johnathan J. Dalzell,et al.  Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. , 2010, International journal for parasitology.

[96]  P. Urwin,et al.  Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. , 2002, Molecular plant-microbe interactions : MPMI.