Rule-based Modeling and Simulation of Biochemical Systems with Molecular Finite

We propose a theoretical formalism, molecular finite automata (MFA), to describe individual proteins as rule-based computing machines. The MFA formalism provides a framework for modeling individual protein behaviors and systems-level dynamics via construction of programmable and executable machines. Models specified within this formalism explicitly represent the context-sensitive dynamics of individual proteins driven by external inputs and represent protein-protein interactions as synchronized machine reconfigurations. Both deterministic and stochastic simulations can be applied to quantitatively compute the dynamics of MFA models. We apply the MFA formalism to model and simulate a simple example of a signal transduction system that involves a MAP kinase cascade and a scaffold protein.

[1]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[2]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[3]  Srinivas Devadas,et al.  Efficient stochastic simulation of reaction–diffusion processes via direct compilation , 2009, Bioinform..

[4]  Xiang-Jiao Yang,et al.  Multisite protein modification and intramolecular signaling , 2005, Oncogene.

[5]  John F. Keane,et al.  A compiled accelerator for biological cell signaling simulations , 2004, FPGA '04.

[6]  Boris N Kholodenko,et al.  Trading the micro-world of combinatorial complexity for the macro-world of protein interaction domains. , 2006, Bio Systems.

[7]  James R Faeder,et al.  Rule-based modeling of biochemical systems with BioNetGen. , 2009, Methods in molecular biology.

[8]  Jin Yang,et al.  Graph Theory for Rule-Based Modeling of Biochemical Networks , 2006, Trans. Comp. Sys. Biology.

[9]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[10]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[11]  Michael Hucka,et al.  A Correction to the Review Titled "Rules for Modeling Signal-Transduction Systems" by W. S. Hlavacek et al. , 2006, Science's STKE.

[12]  D. Bray,et al.  Predicting temporal fluctuations in an intracellular signalling pathway. , 1998, Journal of theoretical biology.

[13]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[14]  Vincent Danos,et al.  Rule-Based Modelling of Cellular Signalling , 2007, CONCUR.

[15]  T. Henzinger,et al.  Executable cell biology , 2007, Nature Biotechnology.

[16]  David Harel,et al.  On Statecharts for Biology , 2010 .

[17]  Vincent Danos,et al.  Internal coarse-graining of molecular systems , 2009, Proceedings of the National Academy of Sciences.

[18]  J C Schaff,et al.  Virtual Cell modelling and simulation software environment. , 2008, IET systems biology.

[19]  T. Hunter,et al.  Signaling—2000 and Beyond , 2000, Cell.

[20]  William S. Hlavacek,et al.  BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains , 2004, Bioinform..

[21]  William S. Hlavacek,et al.  RuleMonkey: software for stochastic simulation of rule-based models , 2010, BMC Bioinformatics.

[22]  Tian Jin,et al.  Key Role of Local Regulation in Chemosensing Revealed by a New Molecular Interaction-Based Modeling Method , 2006, PLoS Comput. Biol..

[23]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[24]  Vincent Danos,et al.  Scalable Simulation of Cellular Signaling Networks , 2007, APLAS.

[25]  Arthur F. Voter,et al.  Introduction to the Kinetic Monte Carlo Method , 2007 .

[26]  Luca Cardelli,et al.  Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus , 2007, CMSB.

[27]  William S. Hlavacek,et al.  Simulation of large-scale rule-based models , 2009, Bioinform..

[28]  William S. Hlavacek,et al.  Rejection-free kinetic Monte Carlo simulation of multivalent biomolecular interactions , 2008, 0812.4619.

[29]  Lukasz Salwinski,et al.  In silico simulation of biological network dynamics , 2004, Nature Biotechnology.

[30]  W. Lim,et al.  Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. , 2006, Annual review of biochemistry.

[31]  W. S. Hlavacek,et al.  Investigation of Early Events in FcεRI-Mediated Signaling Using a Detailed Mathematical Model1 , 2003, The Journal of Immunology.

[32]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[33]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[34]  B. Kholodenko,et al.  Domain-oriented reduction of rule-based network models. , 2008, IET systems biology.

[35]  Leslie M Loew,et al.  Molecular machines or pleiomorphic ensembles: signaling complexes revisited , 2009, Journal of biology.

[36]  James R Faeder,et al.  The complexity of complexes in signal transduction , 2003, Biotechnology and bioengineering.

[37]  Hélène Kirchner,et al.  Graph Rewriting and Strategies for Modeling Biochemical Networks , 2007, Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2007).

[38]  James R Faeder,et al.  Kinetic Monte Carlo method for rule-based modeling of biochemical networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Hiroaki Kitano,et al.  FPGA Implementation of a Data-Driven Stochastic Biochemical Simulator with the Next Reaction Method , 2007, 2007 International Conference on Field Programmable Logic and Applications.

[40]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[41]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[42]  Roger Brent,et al.  Detailed Simulations of Cell Biology with Smoldyn 2.1 , 2010, PLoS Comput. Biol..

[43]  Roger Brent,et al.  Automatic generation of cellular reaction networks with Moleculizer 1.0 , 2005, Nature Biotechnology.

[44]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[45]  Julio Saez-Rodriguez,et al.  A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks , 2006, BMC Bioinformatics.

[46]  G L Johnson,et al.  Organization and regulation of mitogen-activated protein kinase signaling pathways. , 1999, Current opinion in cell biology.

[47]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[48]  William S. Hlavacek,et al.  Rule-based modeling of biochemical networks: Research Articles , 2005 .

[49]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[50]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[51]  B. Kholodenko,et al.  Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. , 2005, Biophysical journal.

[52]  David Lee,et al.  Principles and methods of testing finite state machines-a survey , 1996, Proc. IEEE.

[53]  Jeremy Gunawardena,et al.  Programming with models: modularity and abstraction provide powerful capabilities for systems biology , 2009, Journal of The Royal Society Interface.

[54]  James R Faeder,et al.  The Complexity of Cell Signaling and the Need for a New Mechanics , 2009, Science Signaling.

[55]  R. Breitling,et al.  Current challenges in quantitative modeling of epidermal growth factor signaling , 2005, FEBS letters.

[56]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[57]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[58]  Egon Börger,et al.  Abstract State Machines. A Method for High-Level System Design and Analysis , 2003 .