Nonlinear observers: a circle criterion design and robustness analysis

Globally convergent observers are designed for a class of systems with monotonic nonlinearities. The approach is to represent the observer error system as the feedback interconnection of a linear system and a time-varying multivariable sector nonlinearity. Using LMI software, observer gain matrices are computed to satisfy the circle criterion and, hence, to drive the observer error to zero. In output-feedback design, the observer is combined with control laws that ensure input-to-state stability with respect to the observer error. Robustness to unmodeled dynamics is achieved with a small-gain assignment design, as illustrated on a jet engine compressor example.

[1]  Stephen P. Banks,et al.  A note on non-linear observers , 1981 .

[2]  F. Moore,et al.  A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations , 1986 .

[3]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[4]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[5]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[6]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[7]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[8]  P. Kokotovic,et al.  The peaking phenomenon and the global stabilization of nonlinear systems , 1991 .

[9]  Tzyh Jong Tarn,et al.  Exponential Observers for Nonlinear Dynamic Systems , 1975, Inf. Control..

[10]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[11]  Dimitri Jeltsema,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Santa Barbara,et al.  Unmodeled Dynamics in Robust Nonlinear Control , 2000 .

[13]  J. Tsinias Observer design for nonlinear control systems , 1989 .

[14]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[15]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[16]  J. Hedrick,et al.  Observer design for a class of nonlinear systems , 1994 .

[17]  Petar V. Kokotovic,et al.  Useful nonlinearities and global stabilization of bifurcations in a model of jet engine surge and stall , 1998, IEEE Trans. Autom. Control..

[18]  Manfredi Maggiore,et al.  Output feedback control for stabilizable and incompletely observable nonlinear systems: jet engine stall and surge control , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[19]  J. Tsinias Sontag's “input to state stability condition” and global stabilization using state detection , 1993 .

[20]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[21]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[22]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[23]  S. Abdallah,et al.  Computation of Inviscid Incompressible Flow Using the Primitive Variable Formulation , 1986 .

[24]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[25]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[26]  L. Praly,et al.  Stabilization by output feedback for systems with ISS inverse dynamics , 1993 .