Compression of hyper/ultraspectral data

Two data compression algorithms intended for the compression of hyper and ultraspectral data are reviewed. These methods have been successfully applied to the compression of NASA JPL AVIRIS hyperspectral images. The two algorithms are based on slightly different requirements and assumptions. The first one is a low complexity, real-time, inter-band, least squares optimized predictor (SLSQ) whose raster-scan nature makes it amenable for on-board implementation. The second is a partitioned vector quantization algorithm (LPVQ) with tunable quality ranging from lossless to lossy. LPVQ is more complex, but it allows fast browsing and pure-pixel classification in the compressed domain, so it is more suitable to archival and distribution of compressed data. Both approaches compare well to the state-of-the-art in the compression of AVIRIS data. Preliminary results on the compression of AIRS ultraspectral sounder data are presented.

[1]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[2]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[3]  Giovanni Motta,et al.  Compression of Polynomial Texture Maps , 2001 .

[4]  Giovanni Motta,et al.  High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[5]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[6]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[7]  Timothy J. Schmit,et al.  Effects of the starting channel for spectral reordering on the lossless compression of 3D ultraspectral sounder data , 2005, SPIE Asia-Pacific Remote Sensing.

[8]  Giovanni Motta,et al.  Low-complexity lossless compression of hyperspectral imagery via linear prediction , 2005, IEEE Signal Processing Letters.

[9]  Giovanni Motta,et al.  Compression of hyperspectral imagery , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[10]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[11]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[12]  H. H. Aumann,et al.  AIRS, the first hyper-spectral infrared sounder for operational weather forecasting , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[13]  Timothy J. Schmit,et al.  Predictive partitioned vector quantization for hyperspectral sounder data compression , 2004, SPIE Optics + Photonics.

[14]  H. K. Huang,et al.  Three-dimensional image compression with wavelet transforms , 2000 .

[15]  Yasuo Matsuyama IMAGE COMPRESSION VIA VECTOR QUANTIZATION WITH VARIABLE DIMENSION. , 1987 .

[16]  John F. Arnold,et al.  The lossless compression of AVIRIS images by vector quantization , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  Luciano Alparone,et al.  Near-lossless compression of 3-D optical data , 2001, IEEE Trans. Geosci. Remote. Sens..

[18]  Stephen R. Tate,et al.  Band ordering in lossless compression of multispectral images , 1997, Proceedings of IEEE Data Compression Conference (DCC'94).

[19]  Glen P. Abousleman,et al.  Compression of hyperspectral imagery using hybrid DPCM/DCT and entropy-constrained trellis coded quantization , 1995, Proceedings DCC '95 Data Compression Conference.

[20]  Mark R. Pickering,et al.  Compression of hyperspectral data by spatial/spectral discrete cosine transform , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[21]  Jarno Mielikäinen,et al.  Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data , 2005, IEEE Geoscience and Remote Sensing Letters.

[22]  Jarno Mielikäinen,et al.  Clustered DPCM for the lossless compression of hyperspectral images , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..