Stabilizing an Optoelectronic Microwave Oscillator

This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on inser- tion of a source of optical group delay into an OEO loop. The per- formance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability. An atomic cell also allows for locking the oscillation frequency to particular atomic clock transitions. This reports a proof-of-prin- ciple experiment on an OEO stabilization using the effect of elec- tromagnetically induced transparency in a hot rubidium atomic vapor cell.

[1]  H. Erlig,et al.  39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator , 2002, IEEE Photonics Technology Letters.

[2]  W. Rhodes,et al.  Continuous radio-frequency tuning of an optoelectronic oscillator with dispersive feedback. , 2002, Optics letters.

[3]  Svenja Knappe,et al.  Miniature vapor-cell atomic-frequency references , 2002 .

[4]  M. Scully,et al.  Slow, Ultraslow, Stored, and Frozen Light , 2002 .

[5]  M S Shahriar,et al.  Observation of ultraslow and stored light pulses in a solid. , 2001, Physical review letters.

[6]  Robert W. Boyd,et al.  Slow and Fast Light , 2001 .

[7]  Lute Maleki,et al.  Compact optoelectronic oscillator with ultra-low phase noise performance , 1999 .

[8]  Valeriy V. Yashchuk,et al.  NONLINEAR MAGNETO-OPTICS AND REDUCED GROUP VELOCITY OF LIGHT IN ATOMIC VAPOR WITH SLOW GROUND STATE RELAXATION , 1999 .

[9]  Meir Orenstein,et al.  High spectral purity CW oscillation and pulse generation in optoelectronic microwave oscillator , 1999 .

[10]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[11]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[12]  J. Marangos Electromagnetically induced transparency , 1998 .

[13]  Y. Yamamoto,et al.  Amplitude-squeezed, frequency-modulated, tunable, diode-laser-based source for sub-shot-noise FM spectroscopy. , 1997, Optics letters.

[14]  L. Maleki,et al.  Optoelectronic microwave oscillator , 1996 .

[15]  E. Whittaker,et al.  Theoretical description of frequency modulation and wavelength modulation spectroscopy. , 1994, Applied optics.

[16]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[17]  Leo W. Hollberg,et al.  Optical heterodyne saturation spectroscopy , 1981 .

[18]  L. Maleki,et al.  Multiloop optoelectronic oscillator , 2000, IEEE Journal of Quantum Electronics.

[19]  S. Romisch,et al.  Performance evaluation of an optoelectronic oscillator , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  E. Arimondo Coherent Population Trapping in Laser Spectroscopy , 1996 .